Page 113 - 无损检测2025年第二期
P. 113

实践经验
              实践经验

              DOI:10.11973/wsjc240512



                               制氢吸附塔疲劳开裂的在线检测




                                 胡振龙 ,李秀峰 ,邓 丹 ,沈永娜 ,王 洋 ,李文瑜 ,孙爱鹏                         1
                                                                           4
                                                 1,3
                                       1,3
                                                                  1
                                                                                   1
                                                          2
              [1. 中国特种设备检测研究院,北京 100029;2. 中国船级社实业有限公司,北京 100006;3. 国家市场监管总局技术
                     创新中心(炼油与化工装备风险防控),北京 100029;4. 北方华锦联合石化有限公司,盘锦 124000]
                       摘  要:对制氢吸附塔外表面开裂进行在线检测时,因介质易燃易爆而不宜大面积动火打磨除
                   漆,常规无损检测方法难以实施,而阵列涡流检测受漆层厚度影响易漏检微小开裂。针对此难题,
                   研究了漆层厚度提离效应对阵列涡流检测精度的影响,以及微小裂纹在三点弯曲载荷下的声发射
                   信号特征;对吸附塔漆层下裂纹开展阵列涡流在线检测,并制定声发射检测工艺作为补充手段。现
                   场应用中,某吸附塔经阵列涡流检测发现多处开裂,消除缺陷后经声发射检测无异常,运行五年未
                   再泄漏。结果表明,提出的组合检测方案保障了制氢装置的安全平稳运行,为吸附塔外表面疲劳开
                   裂在线不打磨检测提供了参考和借鉴。
                       关键词:吸附塔;开裂;阵列涡流;声发射
                       中图分类号:TG115.28      文献标志码:B    文章编号:1000-6656(2025)02-0079-05

                            Online testing of cracking defects in the hydrogen adsorption tower


                        HU Zhenlong , LI Xiufeng , DENG Dan , SHEN Yongna , WANG Yang , LI Wenyu , SUN Aipeng 1
                                             1,3
                                                        2
                                                                                         1
                                                                     1
                                  1,3
                                                                                4
               (1. China Special Equipment Inspection and Research Institute, Beijing 100029, China;  2. China Classification Society Industrial Co.,
               Ltd., Beijing 100006, China;  3. Technology Innovation Center of Risk Prevention and Control of Refining and Chemical Equipment,
                  State Administration for Market Regulation, Beijing 100029, China;  4. North Huajin Refining and Petrochemical Co., Ltd.,
                                                     Panjin 124000, China)
                      Abstract: Online detection is carried out for the cracks on the outer surface of the hydrogen production adsorption
                   tower. Since the medium is flammable and explosive, it is not advisable to perform large-area hot work for paint removal
                   by grinding. Conventional nondestructive testing methods are difficult to implement, and array eddy current testing is prone
                   to miss detecting tiny cracks due to the influence of the paint layer thickness. Aiming at this problem, this paper studied the
                   influence of the lift-off effect of the paint layer thickness on the accuracy of array eddy current testing and the characteristics
                   of acoustic emission signals of tiny cracks under three-point bending loads. Online array eddy current testing was carried
                   out for the cracks under the paint layer of the adsorption tower, and the acoustic emission testing process was formulated as
                   a supplementary means. In the on-site application, multiple cracks were detected by array eddy current testing on a certain
                   adsorption tower. After the defects were eliminated, no abnormality was found by acoustic emission testing, and there was
                   no leakage again during the five years of operation. The combined testing scheme proposed in this paper ensured the safe
                   and stable operation of the hydrogen production unit and provided references for online non-grinding detection of fatigue
                   cracks.
                      Key words: adsorption tower; crack; array eddy current; acoustic emission


                 收稿日期:2024-10-30                                     2019年2月,某炼油厂制氢装置设备员在巡检
                 基金项目:国家市场监督管理总局科技计划项目(2022MK200);
                                                                时发现某吸附塔开裂泄漏,裂纹位于母材位置,距环
              中国特种设备检测研究院重点项目(2022重点03)
                                                                焊缝160 mm,该裂纹长285 mm,沿塔壁纵向扩展,外壁
                 作者简介:胡振龙(1986—),男,硕士,高级工程师,主要从事特
              种设备的无损检测工作                                        裂纹形貌如图1所示。经查设备资料,该吸附塔材料为
                 通信作者:李秀峰,lixiufeng@csei.org.cn                 16 MnR,规格为ϕ2 800 mm(直径) ×13 356 mm(高
                                                                                                          79
                                                                                         2025 年 第 47 卷 第 2 期
                                                                                                  无损检测
   108   109   110   111   112   113   114   115   116   117   118