Page 100 - 无损检测2024年第八期
P. 100

吴 伟,等:

              车轴压装界面微动磨损尺寸的非线性检测

              5  结论                                               [11]  KIM  J  Y,LEE  J  S.A  micromechanical  model  for
                                                                     nonlinear  acoustic  properties  of  interfaces  between
                  针对铁路车轴压装界面早期微动磨损的检测难
                                                                     solids[J]. Journal  of  Applied  Physics,2007,101(4):
              题,基于经典非线性界面接触理论与有限元分析,以
                                                                     23-27.
              基波及二次谐波的幅值为特征量构建了超声波非线
                                                                  [12]  ALESHIN  V,DELRUE  S,TRIFONOV  A,et  al.
              性系数与超声透射系数,讨论了压装界面磨损深度、
                                                                     Two dimensional modeling of elastic wave propagation in
              长度以及压装力对超声波非线性系数与超声透射系
                                                                     solids containing cracks with rough surfaces and friction-
              数的影响,提出车轴压装界面微动磨损尺寸评估模
              型,并得出以下结论。                                             Part I:Theoretical background[J]. Ultrasonics,2018,82:
                 (1)超声非线性系数随着压装界面磨损深度、                               11-18.
              长度的增大而增大;超声透射系数随压装界面磨损                              [13]  DELRUE  S,ALESHIN  V,TRUYAERT  K,et  al.
              深度、长度的增大而减小。                                           Two dimensional modeling of elastic wave propagation in
                 (2)基于非线性系数、透射系数分别与界面压                               solids containing cracks with rough surfaces and friction-
              装力、微动磨损深度的关系提出的车轴微动磨损深                                 Part II:numerical implementation[J]. Ultrasonics,2018,
              度的定量评估模型能定量表征微动磨损尺寸,为车                                 82:19-30.
              轴压装界面微动磨损的定量评估提供了理论参考。                              [14]  BLANLOEUIL  P,MEZIANE  A,BACON  C.

                                                                     Numerical study of nonlinear interaction between a crack
              参考文献:
                                                                     and  elastic  waves  under  an  oblique  incidence[J]. Wave
                [1]  李祥志,张艳,徐良乐,等. 高速车轴的疲劳断裂及其                       Motion,2014,51(3):425-437.
                   应对措施[J]. 热加工工艺,2017,46(18):25-29.
                                                                  [15]  SAIDOUN  A,MEZIANE  A,RÉNIER  M,et  al.
                [2]  ZHANG Y B,LU L T,ZOU L,et al.Finite element
                                                                     Numerical  and  experimental  analysis  of  harmonic
                   simulation  of  the  influence  of  fretting  wear  on  fretting
                                                                     generation  method  for  detection  of  closed  cracks[C]//
                   crack  initiation  in  press-fitted  shaft  under  rotating
                   bending[J]. Wear,2018,400/401:177-183.            AIP  Conference  Proceedings.Écully,France:AIP
                [3]  ZOU L,ZENG D F,DONG Y H,et al.Experimental      Publishing LLC,2015.
                   and  numerical  study  on  the  fretting  wear-fatigue     [16]  SAIDOUN  A,MEZIANE  A,RENIER  M,et  al.
                   interaction evolution in press-fitted axles[J]. International
                                                                     Influence  of  contact  interface  morphology  on  the
                   Journal of Fatigue,2023,175:107793.
                                                                     nonlinear interaction between a longitudinal wave and a
                [4]  董懿辉,鲁连涛,李小萱,等. 空心轴与实心轴过盈配
                                                                     contact interface with friction:a numerical study[J]. Wave
                   合结构微动磨损与疲劳的仿真分析[J]. 机械工程学报,
                   2022,58(5):161-169.                               Motion,2021,101:102686.
                [5]  ZHANG  Y  B,LU  L  T,GONG  Y  B,et  al.Fretting     [17]  KIM  C,JETTI  Y  S,DUNN  A  C,et  al.Evaluating
                   wear-induced evolution of surface damage in press-fitted   rolling contact fatigue damage precursors with Rayleigh
                   shaft[J]. Wear,2017,384/385:131-141.
                                                                     waves  in  1060  steel[J]. Journal  of  Nondestructive
                [6]  谭常清. 车轴近表面缺陷相控阵检测技术及自动化应
                                                                     Evaluation,2021,40(4):91.
                   用[J]. 机车车辆工艺,2022(5):4-7.
                                                                  [18]  BALTAZAR A.On the relationship between ultrasonic
                [7]  周正干,孙广开. 先进超声检测技术的研究应用进
                   展[J]. 机械工程学报,2017,53(22):1-10.                    and  micromechanical  properties  of  contacting  rough
                [8]  焦敬品,曾宪超,刘文华,等. 承压界面接触特性超声                       surfaces[J]. Journal  of  the  Mechanics  and  Physics  of
                   检测[J]. 北京工业大学学报,2012,38(6):807-812.               Solids,2002,50(7):1397-1416.
                [9]  孙迪,朱武军,项延训,等. 微裂纹的非线性超声检测                    [19]  舒易亮,刘志明,杨广雪,等. 离心载荷对轴类部件过
                   研究进展[J]. 科学通报,2022,67(7):597-609.
                                                                     盈配合的影响研究[J]. 中南大学学报 (自然科学版),
                [10]  KIM J Y,BALTAZAR A,ROKHLIN S I.Ultrasonic
                                                                     2023,54(7):2941-2951.
                   assessment of rough surface contact between solids from
                                                                  [20]  李博俊,李剑,艾春安,等. 空气耦合超声斜入射法检
                   elastoplastic loading-unloading hysteresis cycle[J]. Journal
                   of  the  Mechanics  and  Physics  of  Solids,2004,52(8):  测固体火箭发动机脱粘缺陷及成像技术研究[J]. 中国
                   1911-1934.                                        测试,2023,49(7):139-147.
                62
                     2024 年 第 46 卷 第 8 期
                     无损检测
   95   96   97   98   99   100   101   102   103   104   105