Page 100 - 无损检测2024年第八期
P. 100
吴 伟,等:
车轴压装界面微动磨损尺寸的非线性检测
5 结论 [11] KIM J Y,LEE J S.A micromechanical model for
nonlinear acoustic properties of interfaces between
针对铁路车轴压装界面早期微动磨损的检测难
solids[J]. Journal of Applied Physics,2007,101(4):
题,基于经典非线性界面接触理论与有限元分析,以
23-27.
基波及二次谐波的幅值为特征量构建了超声波非线
[12] ALESHIN V,DELRUE S,TRIFONOV A,et al.
性系数与超声透射系数,讨论了压装界面磨损深度、
Two dimensional modeling of elastic wave propagation in
长度以及压装力对超声波非线性系数与超声透射系
solids containing cracks with rough surfaces and friction-
数的影响,提出车轴压装界面微动磨损尺寸评估模
型,并得出以下结论。 Part I:Theoretical background[J]. Ultrasonics,2018,82:
(1)超声非线性系数随着压装界面磨损深度、 11-18.
长度的增大而增大;超声透射系数随压装界面磨损 [13] DELRUE S,ALESHIN V,TRUYAERT K,et al.
深度、长度的增大而减小。 Two dimensional modeling of elastic wave propagation in
(2)基于非线性系数、透射系数分别与界面压 solids containing cracks with rough surfaces and friction-
装力、微动磨损深度的关系提出的车轴微动磨损深 Part II:numerical implementation[J]. Ultrasonics,2018,
度的定量评估模型能定量表征微动磨损尺寸,为车 82:19-30.
轴压装界面微动磨损的定量评估提供了理论参考。 [14] BLANLOEUIL P,MEZIANE A,BACON C.
Numerical study of nonlinear interaction between a crack
参考文献:
and elastic waves under an oblique incidence[J]. Wave
[1] 李祥志,张艳,徐良乐,等. 高速车轴的疲劳断裂及其 Motion,2014,51(3):425-437.
应对措施[J]. 热加工工艺,2017,46(18):25-29.
[15] SAIDOUN A,MEZIANE A,RÉNIER M,et al.
[2] ZHANG Y B,LU L T,ZOU L,et al.Finite element
Numerical and experimental analysis of harmonic
simulation of the influence of fretting wear on fretting
generation method for detection of closed cracks[C]//
crack initiation in press-fitted shaft under rotating
bending[J]. Wear,2018,400/401:177-183. AIP Conference Proceedings.Écully,France:AIP
[3] ZOU L,ZENG D F,DONG Y H,et al.Experimental Publishing LLC,2015.
and numerical study on the fretting wear-fatigue [16] SAIDOUN A,MEZIANE A,RENIER M,et al.
interaction evolution in press-fitted axles[J]. International
Influence of contact interface morphology on the
Journal of Fatigue,2023,175:107793.
nonlinear interaction between a longitudinal wave and a
[4] 董懿辉,鲁连涛,李小萱,等. 空心轴与实心轴过盈配
contact interface with friction:a numerical study[J]. Wave
合结构微动磨损与疲劳的仿真分析[J]. 机械工程学报,
2022,58(5):161-169. Motion,2021,101:102686.
[5] ZHANG Y B,LU L T,GONG Y B,et al.Fretting [17] KIM C,JETTI Y S,DUNN A C,et al.Evaluating
wear-induced evolution of surface damage in press-fitted rolling contact fatigue damage precursors with Rayleigh
shaft[J]. Wear,2017,384/385:131-141.
waves in 1060 steel[J]. Journal of Nondestructive
[6] 谭常清. 车轴近表面缺陷相控阵检测技术及自动化应
Evaluation,2021,40(4):91.
用[J]. 机车车辆工艺,2022(5):4-7.
[18] BALTAZAR A.On the relationship between ultrasonic
[7] 周正干,孙广开. 先进超声检测技术的研究应用进
展[J]. 机械工程学报,2017,53(22):1-10. and micromechanical properties of contacting rough
[8] 焦敬品,曾宪超,刘文华,等. 承压界面接触特性超声 surfaces[J]. Journal of the Mechanics and Physics of
检测[J]. 北京工业大学学报,2012,38(6):807-812. Solids,2002,50(7):1397-1416.
[9] 孙迪,朱武军,项延训,等. 微裂纹的非线性超声检测 [19] 舒易亮,刘志明,杨广雪,等. 离心载荷对轴类部件过
研究进展[J]. 科学通报,2022,67(7):597-609.
盈配合的影响研究[J]. 中南大学学报 (自然科学版),
[10] KIM J Y,BALTAZAR A,ROKHLIN S I.Ultrasonic
2023,54(7):2941-2951.
assessment of rough surface contact between solids from
[20] 李博俊,李剑,艾春安,等. 空气耦合超声斜入射法检
elastoplastic loading-unloading hysteresis cycle[J]. Journal
of the Mechanics and Physics of Solids,2004,52(8): 测固体火箭发动机脱粘缺陷及成像技术研究[J]. 中国
1911-1934. 测试,2023,49(7):139-147.
62
2024 年 第 46 卷 第 8 期
无损检测

