Page 111 - 无损检测2024年第四期
P. 111

黄书童,等:
   多传感器数据融合技术在管道无损检测中的应用


        ( 1 ): 101-107.                                   andMeasurem ent , 2023 , 72 : 6001211.

   [ 15 ]  SUN D Y , LI Y B , JIA S X , etal.Non-contact  [ 27 ]  REN TJ , LIUBT , CHEN YR , etal.Astud yofthe

        dia g nosisforg earboxbasedonthefusionof multi-    multisensor estimation method based on fusion



        sensorhetero g eneousdata [ J ] .Information Fusion ,  technolo gy forsubsurfacedefectde p th [ J ] .Journalof





        2023 , 94 : 112-125.                              Sensors , 2018 , 2018 : 6065820.

   [ 16 ]  ZHONG Q , XU EG , SHIY , etal.Faultdia g nosisof  [ 28 ]  PIAO G Y , GUO JB , HU T H , etal.Hi g h-s p eed

        the h y draulic valve usin g a novelsemi-su p ervised  ins p ection methodfusin g p ulsed edd y currentand

        learnin g method based on multi-sensorinformation  ma g neticfluxleaka g e [ C ]// 2019IEEEInternational

        fusion [ J ] . Mechanical S y stems and Si g nal  Instrumentation and  Measurement  Technolo gy

        Processin g , 2023 , 189 : 110093.                Conference.Auckl and , NewZealand : IEEE , 2019.

   [ 17 ]  ZHAN G Y C , JIJC , REN Z H , etal.Multi-sensor  [ 29 ]   杨理践, 马凤铭, 高松巍 . 油气管道缺陷漏磁在线检测

        o p en-set cross-domain intelli g ent dia g nostics for  定量识 别 技 术 [ J ] . 哈 尔 滨 工 业 大 学 学 报, 2009 , 41

        rotatin g  machiner y  under variable  o p eratin g  ( 1 ): 245-247.

        conditions [ J ] . Mechanical S y stems and Si g nal  [ 30 ]   支泽林, 姜洪权, 杨得焱, 等 . 图谱数据深度学 习 融 合
        Processin g , 2023 , 191 : 110172.                 模型及焊 缝 缺 陷 识 别 方 法 [ J ] . 西 安 交 通 大 学 学 报,

   [ 18 ]  LIANG H B , YANG Z W , ZHANG Z D.A multi-      2021 , 55 ( 5 ): 73-82.

        sensordetection method based on WGAN-GP and  [ 31 ]  ZHANG M , GUO Y B , XIE Q J , et al.Defect

        attention-Bi-GRU for wellcontrol p i p eline defects  identificationforoilandg asp i p elinesafet ybasedon

        [ J ] .Journalof Nondestructive Evaluation , 2023 , 42  autonomous dee p learnin g network [ J ] .Com p uter
        ( 2 ): 34.                                        Communications , 2022 , 195 : 14-26.

   [ 19 ]  TRAN M Q , LIU M K , ELSISI M.Effective multi-  [ 32 ]  LANG X M , HAN F C.MFL ima g e reco g nition

        sensordatafusionforchatterdetectionin millin g     method of p i p eline corrosion defects based on

        p rocess [ J ] .ISA Transactions , 2022 , 125 : 514-527.  multila y erfeaturefusion multiscale GhostNet [ J ] .

   [ 20 ]  ZHANG Y , LIU K , BAO H , etal.PMPF : Point-cloud  IEEE  Transactions  on  Instrumentation  and

        multi p le- p ixelfusion-based 3D ob j ectdetectionfor  Measurement , 2022 , 71 : 5020108.

        autonomousdrivin g [ J ] .Remote Sensin g , 2023 , 15  [ 33 ]   车红昆, 吕福在, 项 占 琴 . 多 特 征 SVM-DS 融 合 决 策
        ( 6 ): 1580.                                       的缺陷识 别 [ J ] . 机 械 工 程 学 报, 2010 , 46 ( 16 ): 101-

   [ 21 ]  SENELN , KEFFERPÜTZK , DOYCHEVA K , etal.      105.

        Multi-sensordatafusionforreal-time multi-ob j ect  [ 34 ]  PAN F , TANG D L , GUO X S , et al.Defect

        trackin g [ J ] .Processes , 2023 , 11 ( 2 ): 501.  identificationofp i p elineultrasonicins p ectionbased

   [ 22 ]  LIU Z , BLASCH E , BHATNAGAR G , etal.Fusin g  on multi-feature fusion and multi-criteria feature

        s y ner g isticinformation from multi-sensorima g es : an  evaluation [ J ] .International Journal of Pat tern

        overview  from  im p lementation to  p erformance  Reco g nitionandArtificialIntelli g ence , 2021 , 35 ( 11 ):

        assessment [ J ] .InformationFusion , 2018 , 42 : 127-145.  2150030.

   [ 23 ]  PSUJ G.Multi-sensor datainte g ration usin g dee p  [ 35 ]  TU F M , WEI M H , LIU J.A cou p lin g modelof

        learnin g for characterization of defects in steel  multi-feature fusion and multi-machine learnin g

        elements [ J ] .Sensors , 2018 , 18 ( 1 ): 292.    modelinte g rationfordefectreco g nition [ J ] .Journalof
   [ 24 ]   杨理践, 马凤铭, 高松巍 . 基于神经网络及数据融合的                   Ma g netism and Ma g netic Materials , 2023 , 568 :



        管道缺陷定 量 识 别[ J ] . 无 损 检 测, 2006 , 28 ( 6 ): 281-  170395.
                                                     [ 36 ]   王庆红, 车威威, 王子文 . 基于神经网络的数据融合算
        284.

   [ 25 ]  SANTOSD , MACHADO M A , MONTEIROJ , etal.       法在管道缺陷损伤识别上的应用[ J ] . 全面腐蚀控制,

        Non-destructiveins p ectionofhi g htem p erature p i p in g  2013 , 27 ( 11 ): 70-74.

        combinin gultrasoundandedd ycurrenttestin g [ J ] .  [ 37 ]  WANG H A , CHEN G M.Defectsizeestimation

        Sensors , 2023 , 23 ( 6 ): 3348.                   method for ma g netic flux leaka g e si g nals usin g

   [ 26 ]  SONG H D , XIAO Q , WANG G , etal.Acom p osite  convolutional neural networks [ J ] .Insi g ht-Non-

        a pp roachofelectroma g neticacoustictransducerand  DestructiveTestin gandCondition Monitorin g , 2020 ,

        edd ycurrentforinnerand outercorrosion defects    62 ( 2 ): 86-91.

        detection [ J ] .IEEE TransactionsonInstrumentation                             ( 下转第 86 页)
                                                                                                3
                                                                                               7
                                                                             2024 年 第 46 卷 第 4 期
                                                                                      无损检测
   106   107   108   109   110   111   112   113   114   115   116