Page 46 - 无损检测2024年第十二期
P. 46
吴 琪,等:
GH4169 合金微观组织结构的超声评价与扩散生成方法
途径,并为未来的材料微观组织建模和虚拟试验提 based microstructure prediction during laser sintering of
供了参考。 alumina[J]. Scientific Reports,2021,11(1):10724.
本文获“2024 Evident杯超声检测技术优秀论文 [8] LEE K H,YUN G J. Microstructure reconstruction
评选”活动二等奖 using diffusion-based generative models[J]. Mechanics of
Advanced Materials and Structures,2024,31(18):4443-
参考文献: 4461.
[9] HO J,JAIN A,ABBEEL P. Denoising diffusion
[1] GUPTA M,KHAN M A,BUTOLA R,et al. Advances
probabilistic models[J]. Advances in Neural Information
in applications of non-destructive testing(NDT):a
Processing Systems,2020,33:6840-6851.
review[J]. Advances in Materials and Processing
[10] VAN D O A,VINYALS O. Neural discrete
Technologies,2022,8(2):2286-2307.
representation learning[J]. Advances in Neural
[2] MCKNIGHT S,PIERCE S G,MOHSENI E,et al. A
Information Processing Systems,2017,30:5690-5711.
comparison of methods for generating synthetic training
[11] NICHOL A Q,DHARIWAL P. Improved denoising
data for domain adaption of deep learning models in
diffusion probabilistic models[C]//International
ultrasonic non-destructive evaluation[J]. NDT & E
Conference on Machine Learning. Lille,France:PMLR,
International,2024,141:102978.
2021.
[3] MEOLA C,BOCCARDI S,CARLOMAGNO G M,
[12] WANG Z,BOVIK A C,SHEIKH H R,et al. Image
et al. Nondestructive evaluation of carbon fibre reinforced
quality assessment:from error visibility to structural
composites with infrared thermography and
similarity[J]. IEEE Transactions on Image Processing,
ultrasonics[J]. Composite Structures,2015,134:845-853.
2004,13(4):600-612.
[4] WRÓBEL G,STABIK J,ROJEK M. Non-destructive
[13] HORÉ A,ZIOU D. Image quality metrics:PSNR
diagnostic methods of polymer matrix composites
vs. SSIM[C]//2010 20th International Conference on
degradation[J]. Journal of Achievements in Materials and
Pattern Recognition. Istanbul,Turkey:IEEE,2010.
Manufacturing Engineering,2008,31(1):53.
[5] S O H L - DI CK STEI N J ,WEI SS E , [14] ZHANG R,ISOLA P,EFROS A A,et al. The
MAHESWARANATHAN N,et al. Deep unsupervised unreasonable effectiveness of deep features as a
learning using nonequilibrium thermodynamics[C]// perceptual metric[C]//2018 IEEE/CVF Conference on
International Conference on Machine Learning. Lille, Computer Vision and Pattern Recognition. Salt Lake
France:PMLR,2015. City,UT,USA:IEEE,2018.
[6] YANG Z J,LI X L,CATHERINE B L,et al. [15] CHEN X,WU G H,CHEN H,et al. A multi-
Microstructural materials design via deep adversarial parameter ultrasonic evaluation of mean grain size using
learning methodology[J]. Journal of Mechanical Design, optimization[J]. NDT & E International,2019,106:10-17.
2018,140(11):111416. [16] 陈曦,董金龙,陈昊,等. GH4169晶粒尺寸的双目标超
[7] TANG J N,GENG X,LI D S,et al. Machine learning- 声评价方法[J]. 航空动力学报,2021,36(4):816-825.
12
2024 年 第 46 卷 第 12 期
无损检测

