Page 49 - 无损检测2025年第一期
P. 49

阮隽宇,等:

              基于缺陷漏磁信号特征值的管道缺陷量化分析

                   of  defect  profiles  from  magnetic  flux  leakage   56(6):6200315.
                   measurements  using  a  RBFNN  based  error  adjustment     [14]  DAI  L  S,FENG  Q  S,SUTHERLAND  J,et  al.
                   methodology[J]. IET  Science,Measurement  &       Application  of  MFL  on  girth-weld  defect  detection  of
                   Technology,2017,11(3):262-269.                    oil  and  gas  pipelines[J]. Journal  of  Pipeline  Systems
                [12]  KANDROODI  M  R,SHIRANI  F,ARAABI  B  N,       Engineering and Practice,2020,11(4):47-51.
                   et al. Defect detection and width estimation in natural gas     [15]  ZHEN  L,BĂRBULESCU  A. Comparative  analysis  of
                   pipelines using MFL signals[C]//2013 9th Asian Control   convolutional  neural  network-long  short-term  memory,
                   Conference (ASCC).Turkey:IEEE,2013:1-6.           sparrow  search  algorithm-backpropagation  neural
                [13]  PENG  X,ANYAOHA  U,LIU  Z,et  al. Analysis  of   network,and  particle  swarm  optimization-extreme
                   magnetic-flux leakage (MFL)                       learning  machine  models  for  the  water  discharge  of  the
                                         data for pipeline corrosion
                   assessment[J]. IEEE Transactions on Magnetics,2020,  buzău river,Romania[J]. Water,2024,16(2):289.


































































                                                                                                          19
                                                                                         2025 年 第 47 卷 第 1 期
                                                                                                  无损检测
   44   45   46   47   48   49   50   51   52   53   54