Page 49 - 无损检测2025年第一期
P. 49
阮隽宇,等:
基于缺陷漏磁信号特征值的管道缺陷量化分析
of defect profiles from magnetic flux leakage 56(6):6200315.
measurements using a RBFNN based error adjustment [14] DAI L S,FENG Q S,SUTHERLAND J,et al.
methodology[J]. IET Science,Measurement & Application of MFL on girth-weld defect detection of
Technology,2017,11(3):262-269. oil and gas pipelines[J]. Journal of Pipeline Systems
[12] KANDROODI M R,SHIRANI F,ARAABI B N, Engineering and Practice,2020,11(4):47-51.
et al. Defect detection and width estimation in natural gas [15] ZHEN L,BĂRBULESCU A. Comparative analysis of
pipelines using MFL signals[C]//2013 9th Asian Control convolutional neural network-long short-term memory,
Conference (ASCC).Turkey:IEEE,2013:1-6. sparrow search algorithm-backpropagation neural
[13] PENG X,ANYAOHA U,LIU Z,et al. Analysis of network,and particle swarm optimization-extreme
magnetic-flux leakage (MFL) learning machine models for the water discharge of the
data for pipeline corrosion
assessment[J]. IEEE Transactions on Magnetics,2020, buzău river,Romania[J]. Water,2024,16(2):289.
19
2025 年 第 47 卷 第 1 期
无损检测

