Page 131 - 无损检测2024年第十二期
P. 131
综 述
综 述
DOI:10.11973/wsjc240225
深度学习在油气管道漏磁检测领域的应用
王 轲 1, 2 ,黄成橙 1, 2 ,王 鹏 1, 2
(1. 长江大学 机械工程学院,荆州 434023;2. 湖北省油气钻完井工具工程技术研究中心,荆州 434023)
摘 要:管道运输是石油和天然气等能源介质相对安全和可靠的运输方式,但制造以及焊接缺
陷、损伤、腐蚀等问题的存在导致管道事故时有发生,给管道的安全运行埋下了极大的隐患。漏磁
检测是油气管道安全检测中应用最为广泛的无损检测技术之一,漏磁数据的分析对管道安全评估
至关重要。近年来有许多学者将深度学习应用到管道漏磁检测的数据分析中,取得了显著的成果。
深度学习作为一种强大的机器学习方法,在油气管道漏磁检测领域展现了广泛的应用前景。梳理
了国内外相关研究成果,从管道目标检测、管道异常分类和管道缺陷量化等三个方面详细论述了深
度学习在管道漏磁检测中的应用研究。在此基础上分析了深度学习在管道缺陷漏磁检测领域未来
的发展趋势,以期为相关研究提供参考。
关键词:深度学习;油气管道;漏磁检测;发展趋势
中图分类号:TP277;TG115.28 文献标志码:A 文章编号:1000-6656(2024)12-0093-07
Application of deep learning in magnetic leakage detection of oil and gas pipelines
WANG Ke , HUANG Chengcheng , WANG Peng 1,2
1,2
1,2
(1. School of Mechanical Engineering,Yangtze University, Jingzhou 434023, China;
2. Hubei Engineering Research Center for Oil & Gas Drilling and Completion Tools, Jingzhou 434023, China)
Abstract: Pipeline transportation is a relatively safe and reliable transportation method for energy media such as oil
and natural gas, but pipeline accidents occur from time to time due to manufacturing as well as welding defects, injuries,
corrosion, etc., which lay great hidden dangers for the safe operation of pipelines. Magnetic leakage detection is the most
widely used non-destructive testing technology in oil and gas pipeline safety inspection, and the analysis of magnetic
leakage data is crucial for pipeline safety assessment. In recent years, many scholars have applied deep learning to the data
analysis of pipeline leakage detection, and have achieved remarkable results. As a powerful machine learning method, deep
learning shows a wide range of application prospects in the field of magnetic leakage detection of oil and gas pipelines. This
paper reviews relevant research results at home and abroad, and discussed in detail the research of deep learning in pipeline
leakage magnetic detection from three aspects: pipeline target detection, pipeline anomaly classification and pipeline defect
quantification. On this basis, it analyzes the future development trend of deep learning in the field of pipeline defect leakage
magnetic detection, in order to provide reference for related research.
Key words: deep learning; oil and gas pipeline; magnetic leakage detection; development trend
随着全球能源需求的不断增长和能源资源开发 载着巨大的责任和挑战。油气管道的安全运行对维
的迅猛发展,油气管道作为能源运输的重要通道,承 持能源供应、保障经济发展和保护环境具有重要意
义。油气管道一般深埋在地底下,容易出现由运输
收稿日期:2024-05-20 介质腐蚀造成的内壁缺陷以及由土壤等外部环境影
基金项目:长江大学校级一般教学研究项目(JY2022036)
响造成的外壁缺陷,缺陷的形式包括点蚀、孔洞、裂
作者简介:王 轲(2000—),男,硕士研究生,主要研究方向为井
[1]
纹和破损等 ,缺陷严重的话易导致管道泄漏,从而
下工具智能测控
造成严重的安全事故和环境污染。据统计,2022年,
通信作者:王 鹏(1983—),男,博士,讲师,主要研究方向为石
油机械及井下工具设计方法,94211936@qq.com 中国新建成的油气管道里程约4 668 km,油气管道
93
2024 年 第 46 卷 第 12 期
无损检测

