Page 81 - 无损检测2024年第十期
P. 81
高乾祥,等:
PE 管道外壁缺陷的微波可视化定量检测
平面尺寸。
评估结果显示减薄缺陷定位误差在 0. 5 mm以
内,面积评估精度可达 90% 以上;裂纹定位误差
在 1 mm 以内,长度评估精度可达 88% 以上,实现
了较高精度的缺陷可视化定量评估。文章所提方
图 11 裂纹缺陷的二值化分割处理结果 法可对工程实际中PE管道的外壁减薄及裂纹缺陷
插值处理,最后使用阈值分割二值化和Regionprops 进行可视化定位和平面尺寸评估,具有工程应用
统计函数定量评估了管道外壁缺陷中心位置与 价值。
表3 裂纹定位及长度评估结果
缺陷编号 评估位置/mm 实际位置/mm 评估长度/mm 实际长度/mm 长度误差/%
#2 (51.7, 13.1) (52.0,13.0) 31.5 30 5
#3 (22.3, 12.9) (22.0,13.0) 27.5 30 8.3
#4 (82.1, 23.7) (82.0,23.0) 32 30 6.7
#5 (51.8, 22.8) (52.0,23.0) 33.5 30 11.7
#6 (21.8, 22.4) (22.0,23.0) 33 30 10
#7 (82.0, 33.3) (82.0,33.0) 33.5 30 11.7
#8 (52.1, 32.0) (52.0,33.0) 33.5 30 11.7
#9 (22.0, 32.3) (22.0,33.0) 33.5 30 11.7
参考文献: of glass reinforced epoxy and high density polyethylene
pipes[J]. Journal of Nondestructive Evaluation,2020,
[1] 于昊言,李勤勤,金淇,等. 非金属管道的微波无损检
39(1): 26.
测技术综述[J]. 测控技术, 2023, 42(5): 12-27.
[11] GHASR M T,YING K, ZOUGUI R. 3D millimeter
[2] 李智, 王志刚, 辛明亮. 在用PE燃气管道失效分
wave imaging of vertical cracks and its application for
析[J]. 广东化工, 2023, 50(14): 123-125.
the inspection of HDPE pipes[J]. AIP Conference
[3] SILVA W, LOPES R, ZSCHERPEL U, et al.
Proceedings, 2014, 1581(1): 1531-1536.
X-ray imaging techniques for inspection of composite
[12] CARRIGAN T D,FORREST B E, ANDEM H N,
pipelines[J]. Micron, 2021, 145: 103033.
et al. Non-destructive testing of nonmetallic pipelines
[4] SHAH J, EL-HAWWAT S, WANG H. Guided wave
using microwave reflectometry on an In-line inspection
ultrasonic testing for crack detection in polyethylene
robot[J]. IEEE Transactions on Instrumentation and
pipes: laboratory experiments and numerical
Measurement[J]. 2019, 68(2): 586-594.
modeling[J]. Sensors, 2023, 23(11): 5131.
[13] 雒明世, 张蒙蒙, 方阳. PE管道的近场微波成像及缺
[5] ZHENG J,ZHANG Y, HOU D, et al. A review of
陷定量表征[J]. 通信学报, 2023, 44(9): 139-148.
nondestructive examination technology for polyethylene
[14] WANG R N, FANG Y, GAO Q X, et al. Quantitative
pipe in nuclear power plant[J]. Frontiers of Mechanical
visualization of buried defects in GFRP via microwave
Engineering, 2018, 13: 535-545.
reflectometry[J]. Sensors, 2023, 23(14): 6629.
[6] KAFIEH R, LOTFI T, AMIRFATTAHI R.
[15] FANG Y, CHEN Z M, YANG X H, et al.
Automatic detection of defects on polyethylene pipe
Visualization and quantitative evaluation of delamination
welding using thermal infrared imaging[J]. Infrared
Physics & Technology, 2011, 54(4): 317-325. defects in GFRPs via sparse millimeter-wave imaging
[7] 李少波,杨静,王铮,等. 缺陷检测技术的发展与应用 and image processing[J]. NDT and E International, 2024
研究综述[J]. 自动化学报, 2020, 46(11): 2319-2336. (141): 102975.
[8] 回沛林,李勇,王若男,等. GFRP材料损失缺陷的微波 [16] YANG X H,FANG Y, WANG R N, et al. Visual
反射定量检测[J]. 传感器与微系统, 2021, 40(7): 110-113. quantitative detection of delamination defects in GFRP
[9] 王若男,李勇,回沛林,等. 涡轮叶片热障涂层减薄缺 via microwave[J]. Sensors, 2023(14): 6386.
陷的微波扫频定量检测[J]. 传感器与微系统, 2022, [17] FANG Y,YANG X H, CHEN H E, et al. Non-
41(8): 104-107. destructive quantitative evaluation of delamination depth and
[10] RAHMAN M S U, HARYONO A, ABOU- thickness in GFRP using microwave reflectometry[J]. NDT
KHOUSA M A. Microwave non-destructive evaluation and E International, 2024(144): 103065.
47
2024 年 第 46 卷 第 10 期
无损检测

