Page 75 - 无损检测2024年第十期
P. 75

李长侑,等:

              基于深度学习和时间反演的复合材料内扩展性损伤重建

              探讨了使用U-Net直接反演方法在尽量少的天线数                               4366-4376.
              量并且天线采用直线型排列的情况下的损伤重建效                              [9]  FINK  M.Time  reversal  of  ultrasonic  fields.I.basic
              果。最后,基于这两种方法,提出了TR-Unet方法并                             principles[J]. IEEE  Transactions  on  Ultrasonics,
              进行了应用效果验证,结果表明,该方法不仅可以满                                Ferroelectrics,and  Frequency  Control,1992,39(5):
                                                                     555-566.
              足实际工程需求,还在形状相似度和轮廓细节的准
                                                                  [10]  CARMINATI  R,PIERRAT  R,DE  ROSNY  J,et  al.
              确性上取得了显著提升。
                                                                     Theory  of  the  time  reversal  cavity  for  electromagnetic
              参考文献:                                                  fields[J]. Optics Letters,2007,32(21):3107-3109.
                                                                  [11]  CHEN  Y  M,WANG  B  Z.Polycentric  spatial  focus
                [1]  CASTELLANO A,FRADDOSIO A,PICCIONI M D.
                                                                     of  time-reversal  electromagnetic  field  in  rectangular
                   Quantitative analysis of QSI and LVI damage in GFRP   conductor  cavity[J]. Optics  Express,2013,21(22):
                   unidirectional  composite  laminates  by  a  new  ultrasonic
                                                                     26657-26662.
                   approach[J]. Composites Part B:Engineering,2018,151:
                                                                  [12]  MUKHERJEE S,TAMBURRINO A,HAQ M,et al.
                   106-117.
                                                                     Far field microwave NDE of composite structures using
                [2]  雷毅. 无损检测技术问答[M]. 北京:中国石化出版社,
                                                                     time  reversal  mirror[J]. NDT  &  E  International,2018,
                   2013.
                                                                     93:7-17.
                [3]  WANG  Y  M,CHEW  W  C.An  iterative  solution  of
                                                                  [13]  MUKHERJEE  S,MAYS  R  O,TRINGE  J  W.A
                   the  two-dimensional  electromagnetic  inverse  scattering
                                                                     microwave time reversal algorithm for imaging extended
                   problem[J]. International Journal of Imaging Systems and
                                                                     defects in dielectric composites[J]. IEEE Transactions on
                   Technology,1989,1(1):100-108.
                                                                     Computational Imaging,2021,7:1215-1227.
                [4]  VAN DEN BERG P M,KLEINMAN R E.A contrast
                                                                  [14]  刘彻,杨恺乔,鲍江涵,等. 智能电磁计算的若干进
                   source  inversion  method[J]. Inverse  Problems,1997,
                                                                     展[J]. 雷达学报,2023,12(4):657-683.
                   13(6):1607-1620.
                                                                  [15]  WEI  Z,CHEN  X  D.Deep-learning  schemes  for  full-
                [5]  CHEN  X  D.Subspace-based  optimization  method
                                                                     wave  nonlinear  inverse  scattering  problems[J]. IEEE
                   for  solving  inverse-scattering  problems[J]. IEEE
                                                                     Transactions on Geoscience and Remote Sensing,2019,
                   Transactions on Geoscience and Remote Sensing,2010,
                                                                     57(4):1849-1860.
                   48(1):42-49.
                                                                  [16]  ZHANG  H  H,YAO  H  M,JIANG  L  J,et  al.
                [6]  JIN  K  H,MCCANN  M  T,FROUSTEY  E,et  al.
                                                                     Solving  electromagnetic  inverse  scattering  problems  in
                   Deep convolutional neural network for inverse problems
                   in  imaging[J]. IEEE  Transactions  on  Image  Processing:  inhomogeneous  media  by  deep  convolutional  encoder‒
                   a  Publication  of  the  IEEE  Signal  Processing  Society,  decoder  structure[J]. IEEE  Transactions  on  Antennas
                   2017,26(9):4509-4522.                             and Propagation,2023,71(3):2867-2872.
                [7]  YAO H M,JIANG L J,NG M.Implementing the fast     [17]  SONG R C,LI M L,XU K W,et al.Electromagnetic
                   full-wave electromagnetic forward solver using the deep   inverse  scattering  with  an  untrained  SOM-net[J]. IEEE
                                                                     Transactions  on  Microwave  Theory  and  Techniques,
                   convolutional  encoder-decoder  architecture[J]. IEEE
                   Transactions on Antennas and Propagation,2023,71(1):  2022,70(11):4980-4990.
                   1152-1157.                                     [18]  SALADI  P,KALEPU  Y.Electromagnetic  inverse
                [8]  LIN Z C,GUO R,LI M K,et al.Low-frequency data   scattering  problem  solved  by  DConvNet  and  adapted
                   prediction  with  iterative  learning  for  highly  nonlinear   attention  U-net[C]//2023  IEEE  12th  International
                   inverse  scattering  problems[J]. IEEE  Transactions  on   Conference  on  Communication  Systems  and  Network
                   Microwave  Theory  and  Techniques,2021,69(10):   Technologies(CSNT).Bhopal,India: IEEE,2023.














                                                                                                          41
                                                                                         2024 年 第 46 卷 第 10 期
                                                                                                  无损检测
   70   71   72   73   74   75   76   77   78   79   80