Page 138 - 无损检测2024年第九期
P. 138
颜江涛,等:
金属增材制造检测技术与质量控制研究进展
Keyhole threshold and morphology in laser melting laser ultrasonic imaging method for online inspection of
revealed by ultrahigh-speed X-ray imaging[J]. Science, metal additive manufacturing[J]. Optics and Lasers in
2019,363(6429):849-852. Engineering,2023,160:107244.
[38] ZHAO C,PARAB N D,LI X X,et al.Critical [48] 郭政亚,熊振华. 金属增材制造缺陷检测技术[J]. 哈尔
instability at moving keyhole tip generates porosity in 滨工业大学学报,2020,52(5):49-57.
laser melting[J]. Science,2020,370(6520):1080-1086. [49] PANDIYAN V,MASINELLI G,CLAIRE N,et al.
[39] CHEN Y H,CLARK S J,SINCLAIR L,et al. Deep learning-based monitoring of laser powder
Synchrotron X-ray imaging of directed energy bed fusion process on variable time-scales using
deposition additive manufacturing of titanium alloy Ti- heterogeneous sensing and operando X-ray radiography
6242[J]. Additive Manufacturing,2021,41:101969. guidance[J]. Additive Manufacturing,2022,58:103007.
[40] ESCHNER N,WEISER L,HÄFNER B,et al. [50] LI J C,ZHANG X G,ZHOU Q,et al.A feature-level
Classification of specimen density in Laser Powder Bed multi-sensor fusion approach for in situ quality monitoring
Fusion (L-PBF) using in-process structure-borne acoustic of selective laser melting[J]. Journal of Manufacturing
process emissions[J]. Additive Manufacturing,2020,34: Processes,2022,84:913-926.
101324. [51] ZOU Z Y,ZHANG K,ZHU Z G,et al.Multi-sensor
[41] DRISSI-DAOUDI R,PANDIYAN V,LOGÉ R,et al. monitoring of powder melting states via melt pool
Differentiation of materials and laser powder bed fusion optical emission signals during laser-based powder bed
processing regimes from airborne acoustic emission fusion[J]. Optics Laser Technology,2024,169:109880.
combined with machine learning[J]. Virtual and Physical [52] LI Z X,CHANG B H,WANG K M,et al.Closed-loop
Prototyping,2022,17(2):181-204. control of alternating dual-electron beams for molten pool
[42] YE D S,HONG G S,ZHANG Y J,et al.Defect regulation during in situ additive manufacturing[J]. Journal
detection in selective laser melting technology by acoustic of Materials Processing Technology,2023,319:118087.
signals with deep belief networks[J]. The International [53] XIONG J,YIN Z Q,ZHANG W H.Closed-loop
Journal of Advanced Manufacturing Technology,2018, control of variable layer width for thin-walled parts
96(5):2791-2801. in wire and arc additive manufacturing[J]. Journal of
[43] KONONENKO D Y,NIKONOVA V,SELEZNEV Materials Processing Technology,2016,233:100-106.
M,et al.An in situ crack detection approach in additive [54] DIAO Z W,YANG F,CHEN L,et al.Effects of
manufacturing based on acoustic emission and machine deposition height stability of CuCrZr alloy based on arc
learning[J]. Additive Manufacturing Letters,2023,5: voltage sensing:nfluence of materials and energy saving
i
100130. on wire arc additive manufacturing[J]. Journal of Cleaner
[44] RAFFESTIN M,DOMASHENKOV A,BERTRAND Production,2023,425:138665.
P,et al.Ultrasonic diagnostic for in situ control in metal [55] XIA C Y,PAN Z X,ZHANG S Y,et al.Model
additive manufacturing[J]. Measurement,2023,206: predictive control of layer width in wire arc additive
112244. manufacturing[J]. Journal of Manufacturing Processes,
[45] RIEDER H,SPIES M,BAMBERG J,et al.On- and 2020,58:179-186.
offline ultrasonic characterization of components built [56] REZAEIFAR H,ELBESTAWI M.Porosity formation
by SLM additive manufacturing[C]//AIP Conference mitigation in laser powder bed fusion process using a
Proceedings.Minneapolis:AIP Publishing LLC,2016: control approach[J]. Optics & Laser Technology,2022,
130002. 147:107611.
[46] 白雪,马健,许万卫,等. 基于激光超声的金属增材制 [57] WANG R X,STANDFIELD B,DOU C R,et al.
造在线检测技术研究[J]. 航空制造技术,2022,65(20): Real-time process monitoring and closed-loop control
70-82. on laser power via a customized laser powder bed fusion
[47] CHEN Y,JIANG L Z,PENG Y C,et al.Ultra-fast platform[J]. Additive Manufacturing,2023,66:103449.
100
2024 年 第 46 卷 第 9 期
无损检测

