Page 69 - 无损检测2024年第六期
P. 69
刘 建,等:
基于深度学习的列车车轴缺陷超声检测
4 结语 and transfer learning[J].Sustainable Cities and Society,
2021,70:102898.
基于深度卷积神经网络并通过多种数据样本 [9] LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss
增强方法,引入EMblock机制,提出一种基于EM- for dense object detection[J].IEEE Transactions on
YOLO v5s的超声检测数据识别方法, 有效提高了列 Pattern Analysis and Machine Intelligence,2020,42(2):
车车轴缺陷的超声检测性能,最后验证了不同扩充 318-327.
数据对检测能力的影响。结果表明,所提出网络架 [10] LIU Z,GU X Y,WU W X,et al.GPR-based detection
构能适应相控阵探头的图像和扩充的不同数据的缺 of internal cracks in asphalt pavement:a combination
method of Deepaugment data and object detection[J].
陷检测任务,与传统的YOLO v5s以及同类方法相
Measurement,2022,197:111281.
比,该方法在性能上有明显提升,具有应用于实际车
[11] YU H M,LI Q Y,TAN Y Q,et al.A coarse-to-
轴缺陷检测的水平和潜力。
fine model for rail surface defect detection[J].IEEE
Transactions on Instrumentation and Measurement,
参考文献:
2019,68(3):656-666.
[1] WANG X Y,LOU Z F,WANG X D,et al.Prediction [12] LEE H,EUM S,KWON H.ME R-CNN:multi-expert
of stress distribution in press-fit process of interference R-CNN for object detection[J].IEEE Transactions on
fit with a new theoretical model[J].Proceedings of the Image Processing,2020,29:1030-1044.
Institution of Mechanical Engineers,Part C:Journal [13] QIAN Y,LI X L,ZHANG Q,et al.SPP-CPI:
of Mechanical Engineering Science,2019,233(8): predicting compound-protein interactions based on
2834-2846. neural networks[J].IEEE/ACM Transactions on
[2] SHU Y L,YANG G X,LIU Z M.Simulation research Computational Biology and Bioinformatics,2022,19(1):
on fretting wear of train axles with interference fit 40-47.
based on press-fitted specimen[J].Wear,2023,523: [14] RANI S,GHAI D,KUMAR S.Object detection and
204777. recognition using contour based edge detection and fast
[3] 彭朝勇,高晓蓉,王艾.车轴压装部相控阵超声波探 R-CNN[J].Multimedia Tools and Applications,2022,
伤的各向异性扩散去噪改进算法[J].中国铁道科学, 81(29):42183-42207.
2017,38(3):77-82. [15] KZLOLUK S,SERT E.Hurricane-Faster R-CNN-
[4] 周素霞,卢俊霖,吴毅,等.基于直流电位降的高铁 JS:hurricane detection with faster R-CNN using artificial
车轴裂纹检测研究[J].机械工程学报,2022,58(14): Jellyfish Search (JS) optimizer[J].Multimedia Tools and
288-295. Applications,2022,81(26):37981-37999.
[5] 曹贞全.动车组空心车轴非接触式超声波检测设备的 [16] ZHANG R Y,SONG Y.Non-intrusive load
研究[J].铁道机车与动车,2017(12):46-47,8. identification method based on color encoding and
[6] MARSHALL M B,LEWIS R,DWYER-JOYCE R S, improve R-FCN[J].Sustainable Energy Technologies
et al.Ultrasonic measurement of railway wheel hub‒ and Assessments,2022,53:102714.
axle press-fit contact pressures[J].Proceedings of the [17] HWANG Y J,LEE J G,MOON U C,et al.SSD-
Institution of Mechanical Engineers,Part F:Journal of TSEFFM:new SSD using trident feature and squeeze
Rail and Rapid Transit,2011,225(3):287-298. and extraction feature fusion[J].Sensors,2020,20(13):
[7] HE S Y,HU D Y,YU G,et al.Trackside acoustic 3630.
detection of axle bearing fault using wavelet domain [18] XU Z J,SU J J,HUANG K.A-RetinaNet:a
moving beamforming method[J].Applied Acoustics, novel RetinaNet with an asymmetric attention fusion
2022,195:108851. mechanism for dim and small drone detection in infrared
[8] ZHENG Z,QI H Y,ZHUANG L,et al.Automated images[J].Mathematical Biosciences and Engineering:
rail surface crack analytics using deep data-driven models MBE,2023,20(4):6630-6651.
35
2024 年 第 46 卷 第 6 期
无损检测

