Page 118 - 无损检测2024年第十一期
P. 118
王振宇,等:
飞机装配过程错漏装检测技术研究进展
参考文献: [19] FRUSTACI F,SPAGNOLO F,PERRI S,et
al. Robust and high-performance machine vision
[1] 陈文亮,潘国威,丁力平. 飞机数字化装配技术发展现
system for automatic quality inspection in assembly
状[J]. 航空制造技术,2016,59(8):26-30. processes[J]. Sensors,2022,22(8):2839.
[2] 常家辉,祁萌,李良琦. 装配机器人在国外国防领域的 [20] 刘国召. 视觉检测在圆锥滚子轴承内组件装配中的应
应用进展[J]. 国防制造技术,2018(4):10-19. 用研究[D]. 武汉:华中科技大学,2019.
[3] 张开富, 史越,骆彬,等. 大型飞机装配中的高精度测量技 [21] 李静寅 . 车载导航仪自动装配线视觉检测与感
术研究进展[J]. 激光与光电子学进展,2023,60(3):3788. 知[D]. 杭州:浙江大学,2021.
[4] SILVA A V S,TRABASSO L G. Design for [22] 王贺,李沐天,郑伟,等. 航天制造领域人工智能技术
Automation within the aeronautical domain[J]. Journal
应用研究[J]. 人工智能,2023(1):45-55.
of the Brazilian Society of Mechanical Sciences and
[23] RIO-TORTO I,CAMPANIÇO A T,PINHO P,
Engineering,2019,41(7):292.
et al. Hybrid quality inspection for the automotive
[5] 李会超. 大西洋惊魂——越洋航空236号班机[J]. 百科
industry:replacing the paper-based conformity list
探秘(航空航天),2018(9):18-21.
through semi-supervised object detection and simulated
[6] 丁卫良,常华峰,潘龙龙,等. X射线无损检测的应用及 data[J]. Applied Sciences,2022,12(11):5687.
发展趋势[J]. 科技创新与应用,2020(36):161-162. [24] WU Y,LU Y J. An intelligent machine vision system
[7] BUYNAK C F,BOSSI R H. Applied X-ray computed for detecting surface defects on packing boxes based on
tomography[J]. Nuclear Instruments and Methods in support vector machine[J]. Measurement and Control,
Physics Research Section B:Beam Interactions with 2019,52(7/8):1102-1110.
Materials and Atoms,1995,99(1/2/3/4):772-774. [25] 刘海峡 . 基于深度学习的表面缺陷检测方法研
[8] JANDEJSEK I,JAKUBEK J,JAKUBEK M,et 究[D]. 太原:山西大学,2023.
al. X-ray inspection of composite materials for aircraft [26] 彭茂庭. 基于模板匹配及神经网络的目标检测算法研
177:109045. structures using detectors of Medipix type[J]. Journal of 究及应用[D]. 南京:南京航空航天大学,2020.
[34] ZHONG L F,WU J,LI Q,et al. A comprehensive Instrumentation,2014,9(5):C05062. [27] 杨冬. 飞机部件装配状态智能检测系统研究与实
survey on automatic knowledge graph construction[J]. [9] QING X L,LI W Z,WANG Y S,et al. Piezoelectric 现[D]. 成都:电子科技大学,2021.
ACM Computing Surveys,2024,56(4):1-62. transducer-based structural health monitoring for aircraft [28] MAACK R F,TERCAN H,MEISEN T. Deep learning
applications[J]. Sensors,2019,19(3):545. based visual quality inspection for industrial assembly
[10] 李俊霖,杨晨菲. X射线无损检测系统信息化技术的研 line production using normalizing flows[C]//2022 IEEE
究与应用[J]. 无损探伤,2023,47(2):38-41. 20th International Conference on Industrial Informatics
[11] 马建. 基于机器视觉的工件识别与定位系统的设计与 (INDIN). Perth:IEEE,2022:329-334.
实现[D]. 北京:中国科学院大学(中国科学院沈阳计算 [29] KOVILPILLAI J J A,JAYANTHY S. An optimized
技术研究所),2020. deep learning approach to detect and classify defective
[12] 方路平, 何杭江,周国民. 目标检测算法研究综述[J]. 计 tiles in production line for efficient industrial quality
算机工程与应用,2018,54(13):11-18,33. control[J]. Neural Computing and Applications,2023,35
[13] 赵晓山. 基于机器视觉的钢结构工件识别及定位系统 (15):11089-11108.
设计与研究[D]. 秦皇岛:燕山大学,2022. [30] ZHU D D,LUO Y,DAI L,et al. Salient object
[14] 董元发,肖清海,查靓,等. 手工装配中微小金属件漏 detection via a local and global method based on deep
装模糊自适应视觉检测方法[J]. 现代制造工程,2019 residual network[J]. Journal of Visual Communication
(3):108-114,147. and Image Representation,2018,54:1-9.
[15] 荆鑫 . 基于模板匹配的视觉分拣方法及应用研 [31] ZHANG Z S,QIAO S Y,XIE C H,et al. Single-
究[D]. 哈尔滨:哈尔滨工业大学,2017. shot object detection with enriched semantics[C]//2018
[16] 段瑞玲,李庆祥,李玉和. 图像边缘检测方法研究综 IEEE/CVF Conference on Computer Vision and Pattern
述[J]. 光学技术,2005,31(3):415-419. Recognition. Salt Lake City:IEEE,2018:5813-5821.
[17] CARPINTERI A,CORNETTI P,KOLWANKAR [32] REZATOFIGHI H,TSOI N,GWAK J,et al.
K M. Calculation of the tensile and flexural strength of Generalized intersection over union:a metric and a loss
disordered materials using fractional calculus[J]. Chaos, for bounding box regression[C]//2019 IEEE/CVF
Solitons & Fractals,2004,21(3):623-632. Conference on Computer Vision and Pattern Recognition
[18] 陈一虎. 图像边缘检测方法综述[J]. 宝鸡文理学院学报 (CVPR).Long Beach:IEEE,2019:658-666.
(自然科学版),2013,33(1):16-21. (下转第94页)
80
2024 年 第 46 卷 第 11 期
无损检测

