基于自适应SVM决策树的焊缝缺陷类型识别
Welding Defects Classification Based on Adaptive SVM Decision Tree
-
摘要: 针对传统X射线焊缝缺陷检测方法普遍存在分类识别精度不高的问题, 提出了一种基于分离程度的自适应SVM决策树算法。首先对滤波后的X-Ray焊缝缺陷图像进行数学形态学重建, 然后根据分离程度, 每次将分离程度最大的缺陷类别首先分离出来, 构造自适应二叉树的SVM分类器, 从而达到了减小二叉树的累积误差, 得到了分类性能优良的的SVM决策树, 并用其对X-Ray焊缝缺陷图像进行分类识别。实验结果表明, 该算法取得了好的分类精度和识别效果。Abstract: An adaptive SVM(Support Vector Machines) based on binary tree using the degree of separation is proposed in this paper, aiming at the problem that it’s difficult for traditional detection methods to accurately identify the welding defects of X-Ray images. Firstly, mathematical morphological reconstruction is applied to the filtered X-Ray images of welding defects. It is proposed to separate category of defects with the largest degree of separation as a priority, and to construct adaptive SVM classifiers based on binary tree, thus decreasing the accumulated error. Finally, a SVM decision tree of good classification performance can be obtained, which is used to classify and identify the X-Ray images of welding defects, and it shows that the algorithm has made a good classification and recognition accuracy results.