Cracking Acoustic Emission Identification Method based on PCA and SVM
-
摘要: 针对采用幅值、能量等统计特征参数分类识别声发射(AE)信号时存在的信息冗余问题,提出利用主成分分析(PCA)方法减少信息冗余,提取AE信号统计特征。设计了钢板表面铬层裂纹试验,对统计特征参数进行主成分分析,提取了两个主成分。设计了支持向量机(SVM)分类器,以主成分为输入向量,分类识别铬层裂纹AE信号。验证了主成分可以有效表征AE信号统计特征,减少了信息冗余,提高了分类效率及准确率。
-
关键词:
- 声发射 /
- 统计特征参数 /
- 主成分分析(PCA) /
- 支持向量机(SVM) /
- 识别
Abstract: Information redundancy is a big problem in acoustic emission(AE) signal identification based on statistical feature parameters such as amplitude, energy counts, etc. Here, principle component analysis(PCA) was employed to reduce information redundancy and extract statistical feature of AE signals.The AE data were collected in the AE test for Cr-coating cracking on the surface of a steel plate, AE statistical feature parameters were analyzed using PCA, and two principle components were extracted. The principle components were employed as the input vector of a SVM classifier, and the AE signals caused by Cr-coating cracking were identified . It demonstrated that principle components could represent statistical feature of AE signals, reduce information redundancy, and effectively raise identification efficiency and accuracy.-
Keywords:
- Acoustic emission /
- Statistical feature parameters /
- PCA /
- SVM /
- Identification
-
-
[1] 杨班权.涂层断裂韧性的声发射辅助拉伸测量方法[J].兵工学报,2008,29(4):420-424. [2] 金文,陈长征,金志浩,等.声发射源识别中的三比值特征提取方法研究[J].仪器仪表学报,2008,29(3):530-534. [3] 杨明纬,耿荣生.声发射检测[M].北京:机械工业出版社,2005. [4] 邵永波,裴珍,朱祖铭,等. 基于声发射技术的钢丝绳断丝模式识别[J].应用声学,1999,18(1):1-5. [5] 钟建强,柳颖,杨娟,等.利用声发射技术检测储罐的腐蚀损伤状态[J].无损检测,2011,33(11):24-28. [6] 巴克豪斯.多元统计方法[M].上海:格致出版社,2009. [7] LI Li, LI Ji, CHEN Bao-jia. Wavelet packet and support vector machine for engine fault diagnosis[J]. Advanced Materials Research,2011(230-232):1-6. [8] 王东,吴湘滨.利用粒子群算法优化SVM分类器的超参数[J].计算机应用,2008,28(1):134-139.
计量
- 文章访问数: 0
- HTML全文浏览量: 0
- PDF下载量: 2