Micro-CT detection of small defects in additive manufacturing
-
摘要:
通过高精度金属增材制造技术设计制造了两组不同类型的缺陷试件,并基于显微CT检测技术和缺陷解剖金相检测方式,研究显微CT对增材制造小缺陷的实际检测能力。试验结果表明,显微CT在体素尺寸5 μm下能有效检出尺寸为20 μm的人工缺陷;金相检测与CT检测结果基本一致,缺陷尺寸测量差小于10 μm;由于部分体积效应的影响,更小尺寸缺陷的尺寸测量结果误差更大。
Abstract:In this paper, two groups of different types of defective specimens were designed and manufactured through high-precision metal additive manufacturing technology. Based on the micro-CT detection technology and the defect anatomical metallographic detection method, the actual detection ability of micro-CT on small defects of additive manufacturing was studied. The research results showed that micro-CT can effectively detect the artificial defects of 20 μm under the voxel size of 5 μm; metallographic detection and CT detection results were basically the same, and the difference in the measurement of the defect size was less than 10 μm; the defects of smaller sizes were more inaccurate due to the influence of the partial volume effect of the dimensional measurement results.
-
Keywords:
- additive manufacturing /
- micro-CT /
- defect detection /
- dimensional measurement
-
-
Table 1 体积型缺陷CT检测结果灰度测量与统计值
缺陷直径/μm 材料灰度值 缺陷灰度值 对比度 噪声 信噪比 尺寸测量值/μm 20 44 976 26 500 41 % 2 437 18 30 50 44 567 25 431 43 % 2 572 17 45 100 45 307 23 247 49 % 2 457 18 100 200 43 894 22 022 50 % 2 493 18 200 400 44 363 23 650 47 % 2 478 18 400 Table 2 裂纹缺陷CT检测结果灰度测量与统计值
缺陷宽度/μm 材料灰度值 缺陷灰度值 对比度 噪声 信噪比 尺寸测量值/μm 20 37 883 21 222 44 % 1 192 32 28 50 37 200 22 483 40 % 1 142 33 45 100 37 940 21 180 44 % 1 139 33 100 200 38 496 20 286 47 % 1 151 33 200 400 37 430 19 479 48 % 1 070 35 400 Table 3 不同检测方式对不同类型缺陷的尺寸测量值
缺陷类型 检测方式 缺陷尺寸 体积型缺陷 金相检测 23 47 100 200 400 CT检测 30 45 100 200 400 裂纹缺陷 金相检测 24 48 100 200 400 CT检测 28 45 100 200 400 -
[1] HUANG Y ,LEU M C ,MAZUMDER J ,et al .Additive manufacturing:current state,future potential,gaps and needs,and recommendations[J].Journal of Manufacturing Science and Engineering,2015,137(1):014001. [2] YADOLLAHI A ,SHAMSAEI N .Additive manufacturing of fatigue resistant materials:challenges and opportunities[J].International Journal of Fatigue,2017,98:14-31. [3] 张学军,唐思熠,肇恒跃,等 .3D打印技术研究现状和关键技术[J].材料工程,2016,44(2):122-128. [4] 杨平华,高祥熙,梁菁,等 .金属增材制造技术发展动向及无损检测研究进展[J].材料工程,2017,45(9):13-21. [5] DU PLESSIS A ,YADROITSEV I ,YADROITSAVA I ,et al .X-ray microcomputed tomography in additive manufacturing:a review of the current technology and applications[J].3D Printing and Additive Manufacturing,2018,5(3):227-247. [6] 张祥春,张祥林,刘钊,等 .工业CT技术在激光选区熔化增材制造中的应用[J].无损检测,2019,41(3):52-57. [7] KING W E ,BARTH H D ,CASTILLO V M ,et al .Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing[J].Journal of Materials Processing Technology,2014,214(12):2915-2925. [8] PANWISAWAS C ,PERUMAL B ,WARD R M ,et al .Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloys:experimental and modelling[J].Acta Materialia,2017,126:251-263.