Page 57 - 无损检测2024年第六期
P. 57
王树森,等:
基于深度学习的焊缝缺陷 X 射线检测图像识别与增强
4 结语 [7] RAHMAN T,KHANDAKAR A,QIBLAWEY Y,
et al.Exploring the effect of image enhancement
(1)综合考虑增强方法的图像重建能力、图像 techniques on COVID-19 detection using chest X-ray
清晰度和信息熵,直方图均衡化与限制对比度自适 images[J].Computers in Biology and Medicine,
应直方图均衡化对焊缝缺陷X射线检测图像有最好 2021,132:104319.
的增强效果。 [8] 张文璐. 工业X射线图像增强算法的研究[D]. 太原: 中
(2)在直方图均衡化的基础上,自适应中值滤 北大学,2022.
波有最好的去噪能力,双边滤波有较好的细节信息 [9] DIWAKAR M,KUMAR M.A review on CT image
保留能力,非局部均值滤波在不同类型的缺陷图像 noise and its denoising[J].Biomedical Signal
Processing and Control,2018,42:73-88.
上表现稳定,小波降噪的综合表现最好。
[10] HOU W H,WEI Y,JIN Y,et al.Deep features
(3)提出了一种结合限制对比度的直方图均衡
based on a DCNN model for classifying imbalanced
化和非局部均值滤波的图像增强方法,采用该方法 weld flaw types[J].Measurement,2019,131:482-
结合ResNet50模型对焊缝缺陷进行分类,准确率, 489.
精确率,召回率, F 1 值分别提高了 3. 2%,6. 23%, [11] 周冲.基于梯度场的工业X射线图像增强及算法加速
3. 98%,5. 23%。有效解决了焊缝X射线检测图像 研究[D].太原:中北大学,2020.
存在的对比度低、像素分布不均匀、噪声差等问题。 [12] ZHANG L,ZHANG Y J,DAI B C,et al.Welding
defect detection based on local image enhancement[J].
参考文献: IET Image Processing,2019,13(13):2647-2658.
[13] 辛晨.基于图像处理的工业X射线探伤关键技术研
[1] VILAR R, ZAPATA J, RUIZ R.An automatic
究[D].西安:西安电子科技大学,2014.
system of classification of weld defects in radiographic
images[J].NDT & E International,2009,42(5):467- [14] 朱凯,李理,张彤,等.视觉Transformer在低级视觉
领域的研究综述[J].计算机工程与应用,2024,60(4):
476.
39-56.
[2] ZHANG Z F,WEN G R, CHEN S B.Weld image
[15] 赵云龙,葛广英.智能图像处理:Python和OpenCV实
deep learning-based on-line defects detection using
现[M].北京:机械工业出版社,2022.
convolutional neural networks for Al alloy in robotic arc
welding[J].Journal of Manufacturing Processes,2019, [16] HWANG H,HADDAD R A.Adaptive Median filters:
45:208-216. new algorithms and results[J].IEEE Transactions on
[3] KHUMAIDI A,YUNIARNO E M, PURNOMO M Image Processing:a Publication of the IEEE Signal
Processing Society,1995,4(4):499-502.
H.Welding defect classification based on convolution
neural network (CNN)and Gaussian kernel[C]//2017 [17] BUADES A,COLL B,MOREL J M.A non-local
International Seminar on Intelligent Technology and algorithm for image denoising[C]//2005 IEEE Computer
Its Applications (ISITIA).Surabaya,Indonesia: Society Conference on Computer Vision and Pattern
IEEE,2017. Recognition (CVPR'05).San Diego,CA,USA:IEEE,
[4] 李超,孙俊.基于机器视觉方法的焊缝缺陷检测及分 2005.
类算法[J].计算机工程与应用,2018,54(6):264-270. [18] TOMASI C,MANDUCHI R.Bilateral filtering for
[5] BOSSE S,MANIRY D,MULLER K R,et al.Deep gray and color images[C]//Sixth International Conference
neural networks for No-reference and full-reference on Computer Vision.Bombay,India:IEEE,1998.
image quality assessment[J].IEEE Transactions on [19] WANG Z,BOVIK A C,SHEIKH H R,et al.Image
Image Processing:a Publication of the IEEE Signal quality assessment:from error visibility to structural
Processing Society,2018,27(1):206-219. similarity[J].IEEE Transactions on Image Processing:
[6] HOU W H,WEI Y,GUO J,et al.Automatic detection a Publication of the IEEE Signal Processing Society,
of welding defects using deep neural network[J]. 2004,13(4):600-612.
Journal of Physics:Conference Series,2018,933: [20] 谢小甫,周进,吴钦章. 一种针对图像模糊的无参考质
012006. 量评价指标[J]. 计算机应用,2010,30(4): 921-924.
23
2024 年 第 46 卷 第 6 期
无损检测

