Page 57 - 无损检测2024年第六期
P. 57

王树森,等:

              基于深度学习的焊缝缺陷 X 射线检测图像识别与增强

              4  结语                                              [7]  RAHMAN  T,KHANDAKAR  A,QIBLAWEY  Y,
                                                                     et  al.Exploring  the  effect  of  image  enhancement
                 (1)综合考虑增强方法的图像重建能力、图像                               techniques on COVID-19 detection using chest X-ray

              清晰度和信息熵,直方图均衡化与限制对比度自适                                 images[J].Computers  in  Biology  and  Medicine,
              应直方图均衡化对焊缝缺陷X射线检测图像有最好                                 2021,132:104319.
              的增强效果。                                              [8]  张文璐. 工业X射线图像增强算法的研究[D]. 太原: 中
                 (2)在直方图均衡化的基础上,自适应中值滤                               北大学,2022.

              波有最好的去噪能力,双边滤波有较好的细节信息                             [9]  DIWAKAR M,KUMAR M.A review on CT image
              保留能力,非局部均值滤波在不同类型的缺陷图像                                 noise  and  its  denoising[J].Biomedical  Signal
                                                                     Processing and Control,2018,42:73-88.
              上表现稳定,小波降噪的综合表现最好。
                                                                  [10]  HOU  W  H,WEI  Y,JIN  Y,et  al.Deep  features
                 (3)提出了一种结合限制对比度的直方图均衡

                                                                     based  on  a  DCNN  model  for  classifying  imbalanced
              化和非局部均值滤波的图像增强方法,采用该方法                                 weld  flaw  types[J].Measurement,2019,131:482-
              结合ResNet50模型对焊缝缺陷进行分类,准确率,                             489.
              精确率,召回率, F 1 值分别提高了 3. 2%,6. 23%,                   [11]  周冲.基于梯度场的工业X射线图像增强及算法加速
              3. 98%,5. 23%。有效解决了焊缝X射线检测图像                           研究[D].太原:中北大学,2020.
              存在的对比度低、像素分布不均匀、噪声差等问题。                             [12]  ZHANG  L,ZHANG  Y  J,DAI  B  C,et  al.Welding
                                                                     defect  detection  based  on  local  image  enhancement[J].
              参考文献:                                                  IET Image Processing,2019,13(13):2647-2658.
                                                                  [13]  辛晨.基于图像处理的工业X射线探伤关键技术研

                [1]  VILAR  R, ZAPATA  J, RUIZ  R.An  automatic

                                                                     究[D].西安:西安电子科技大学,2014.
                   system  of  classification  of  weld  defects  in  radiographic
                   images[J].NDT & E International,2009,42(5):467-    [14]  朱凯,李理,张彤,等.视觉Transformer在低级视觉
                                                                     领域的研究综述[J].计算机工程与应用,2024,60(4):
                   476.
                                                                     39-56.

                [2]  ZHANG  Z  F,WEN  G  R,  CHEN  S  B.Weld  image
                                                                  [15]  赵云龙,葛广英.智能图像处理:Python和OpenCV实
                   deep  learning-based  on-line  defects  detection  using
                                                                     现[M].北京:机械工业出版社,2022.
                   convolutional neural networks for Al alloy in robotic arc
                   welding[J].Journal  of  Manufacturing  Processes,2019,    [16]  HWANG H,HADDAD R A.Adaptive Median filters:
                   45:208-216.                                       new  algorithms  and  results[J].IEEE  Transactions  on
                [3]  KHUMAIDI  A,YUNIARNO  E  M,  PURNOMO  M         Image  Processing:a  Publication  of  the  IEEE  Signal

                                                                     Processing Society,1995,4(4):499-502.
                   H.Welding  defect  classification  based  on  convolution
                   neural  network (CNN)and  Gaussian  kernel[C]//2017     [17]  BUADES  A,COLL  B,MOREL  J  M.A  non-local

                   International  Seminar  on  Intelligent  Technology  and   algorithm for image denoising[C]//2005 IEEE Computer
                   Its  Applications (ISITIA).Surabaya,Indonesia:    Society  Conference  on  Computer  Vision  and  Pattern
                   IEEE,2017.                                        Recognition (CVPR'05).San Diego,CA,USA:IEEE,
                [4]  李超,孙俊.基于机器视觉方法的焊缝缺陷检测及分                         2005.
                   类算法[J].计算机工程与应用,2018,54(6):264-270.            [18]  TOMASI  C,MANDUCHI  R.Bilateral  filtering  for
                [5]  BOSSE S,MANIRY D,MULLER K R,et al.Deep          gray and color images[C]//Sixth International Conference
                   neural  networks  for  No-reference  and  full-reference   on Computer Vision.Bombay,India:IEEE,1998.
                   image  quality  assessment[J].IEEE  Transactions  on     [19]  WANG Z,BOVIK A C,SHEIKH H R,et al.Image
                   Image  Processing:a  Publication  of  the  IEEE  Signal    quality  assessment:from  error  visibility  to  structural
                   Processing Society,2018,27(1):206-219.            similarity[J].IEEE  Transactions  on  Image  Processing:
                [6]  HOU W H,WEI Y,GUO J,et al.Automatic detection   a  Publication  of  the  IEEE  Signal  Processing  Society,
                   of  welding  defects  using  deep  neural  network[J].    2004,13(4):600-612.
                   Journal  of  Physics:Conference  Series,2018,933:    [20]  谢小甫,周进,吴钦章. 一种针对图像模糊的无参考质


                   012006.                                           量评价指标[J]. 计算机应用,2010,30(4): 921-924.





                                                                                                          23
                                                                                         2024 年 第 46 卷 第 6 期
                                                                                                  无损检测
   52   53   54   55   56   57   58   59   60   61   62