• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

涡流检测信号处理技术

田代才, 陈铁群, 张欣宇

田代才, 陈铁群, 张欣宇. 涡流检测信号处理技术[J]. 无损检测, 2007, 29(10): 599-602.
引用本文: 田代才, 陈铁群, 张欣宇. 涡流检测信号处理技术[J]. 无损检测, 2007, 29(10): 599-602.
TIAN Dai-cai, CHEN Tie-qun, ZHANG Xin-yu. Eddy Current Signal Analysis and Processing Techniques[J]. Nondestructive Testing, 2007, 29(10): 599-602.
Citation: TIAN Dai-cai, CHEN Tie-qun, ZHANG Xin-yu. Eddy Current Signal Analysis and Processing Techniques[J]. Nondestructive Testing, 2007, 29(10): 599-602.

涡流检测信号处理技术

详细信息
  • 中图分类号: TG115.28

Eddy Current Signal Analysis and Processing Techniques

  • 摘要: 涡流检测线圈输出信号十分复杂,对该信号进行准确的分析处理是获得高精度和高可靠性检测结果的基础。介绍了涡流检测信号分析处理的几种新技术,包括小波除噪技术、神经网络技术、信息融合技术、电磁场仿真技术、DSP技术和网络分析处理系统等。通过分析各种新技术的应用状况及发展潜力,指出了将这些技术综合运用并与专家系统相结合实现智能检测是未来的发展趋势。
    Abstract: The output signals of measuring coil for eddy current testing is rather complicated, but is essential for detection accuracy and reliability. Several new techniques of eddy current signal analysis and processing, including wavelet denoising, neural network, electromagnetic simulation, DSP technique and network data processing system were discussed. The development trend in future was presented by studying the application status and development potential of these new methods, that is the realization of auto detection by integrated usage of these techques combined with expert system.
  • [1] 游凤荷,何福有,魏 莉,等.涡流检测信号处理技术[J].无损检测,2003,25(8):423-427.
    [2] 林俊明,余兴增,方松利,等.基于小波分析的涡流信号去噪处理[J].无损检测,2003,25(5):257-259.
    [3] 时振堂,陈德智.涡流检测信号小波除噪与缺陷特征提取[J].无损检测,2003,25(9):472-476.
    [4] Mallat S, Huang W. Singularity detection and processing with wavelets[J]. IEEE Transactions on Information Theory,1992,38(2):617-643.
    [5] Chen G, Yamaguchi A, Miya K. A novel signal processing technique for eddy current testing of steam genetator tubes[J]. IEEE Transactions on magnetics,1998,34(3):642-648.
    [6] Mallat S, Zhong S. Characterization of signal from multiscale edges[J]. IEEE Transactions on Pattern and Machine Intelligence,1992,14(7):710-732.
    [7] 金建华,康宜华.人工神经网络在电磁无损检测中的应用[J].无损检测,2003,25(12):638-640.
    [8] 施克仁,何朝晖.人工神经网络在涡流检测信号处理中的应用[J].无损检测,1996,18(7):199-201.
    [9] Kung S Y. Digital Neural Network[M]. New York: Prentice-Hall,1993.
    [10] Bianchini M, Frasconi P, Cori M. Learning without minima in radial basis function network[J]. IEEE Transactions on Neural Network,1995,6(3):749.
    [11] 游凤荷,孙砚飞.数据融合技术及其在涡流信号处理中的应用[J].无损检测,2003,25(2):92-95.
    [12] 金建华,康宜华.多传感器信息的决策融合法及其在电磁检测中的应用[J].无损检测,2003,25(11):585.
    [13] 蒋光密,张兴访,周 济,等.电涡流检测系统中的电磁场仿真[J].计算机仿真,2000,17(5):36-39.
    [14] 陈 键,方松利,林俊明,等.DSP技术在涡流信号处理中的应用[J].无损探伤,2002,(5):31-33.
    [15] 陈 键,王 琪,林俊明.EEC-2001net涡流检测数据网络分析处理系统[J].无损检测,2003,25(5):276.
计量
  • 文章访问数:  7
  • HTML全文浏览量:  1
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-04-11
  • 刊出日期:  2007-10-09

目录

    /

    返回文章
    返回