Acoustic Emission Source Location for the Crack of Francis Turbine Runner Based on BP Neural Network
-
摘要: 提出使用基于BP神经网络的智能定位方法,用于混流式水轮机的裂纹声发射源定位。理论和实验证明,该方法较好地解决了声发射源定位问题,为进行混流式水轮机裂纹在线监测提供依据。Abstract: Intelligent location model based on BP neural network was proposed, which could serve in AE source location of the crack of francis turbine. Testing proved, theoretically and practically, that it could locate AE source efficiently, and could be used for the online monitoring crack of francis turbine runner.
-
Keywords:
- Acoustic emission testing /
- Source location /
- Francis turbine runner /
- Crack /
- Neural networks
-
-
[1] 黄文,吴彤峰,毛汉领.水轮机转轮叶片应力分布及其裂纹成因[J].实用测试技术,1999,(3):33-34. [2] 沈功田,耿荣生,刘时风.声发射源定位技术[J].无损检测,2002,24(3):114-117. [3] 易若翔,刘时风,耿荣生,等.人工神经网络在声发射检测中的应用[J].无损检测,2002,24(11):488-496. [4] 覃大清,刘光宁,陶星明.混流式水轮机转轮叶片裂纹问题[J].大电机技术,2005,(4):39-44. [5] 李东生,黄新明,欧进萍.改进的神经网络技术在声发射定位中的应用[J].无损检测,2006,28(6):288-29. [6] Wang J H, Chang C. Identification of the number and location of acoustic sources[J]. Journal of Sound and Vibration,2005,28(4):393-420. [7] 飞思科技产品研发中心.神经网络理论与Matlab7实现[M].北京:电子工业出版社,2005. [8] Marwala T. Damage identification using committee of natual network[J]. ASCE Journal of Engineering Mechanics,2001,126(1):163-168.
计量
- 文章访问数: 3
- HTML全文浏览量: 0
- PDF下载量: 1