• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

基于径向基网络的结构损伤程度检测

周之, 刘冰

周之, 刘冰. 基于径向基网络的结构损伤程度检测[J]. 无损检测, 2014, 36(1): 11-14.
引用本文: 周之, 刘冰. 基于径向基网络的结构损伤程度检测[J]. 无损检测, 2014, 36(1): 11-14.
ZHOU Zhi, LIU Bing. Detection of Structure Damage Degree Based of RBF Network[J]. Nondestructive Testing, 2014, 36(1): 11-14.
Citation: ZHOU Zhi, LIU Bing. Detection of Structure Damage Degree Based of RBF Network[J]. Nondestructive Testing, 2014, 36(1): 11-14.

基于径向基网络的结构损伤程度检测

详细信息
    作者简介:

    周之(1989-),男,硕士,从事光纤光栅传感器的结构损伤检测。

  • 中图分类号: TG115.28

Detection of Structure Damage Degree Based of RBF Network

  • 摘要: 为了对悬臂梁缺口形式的损伤程度进行评估,以缺口深度为衡量标准,将径向基网络与传统的结构损伤检测相结合,运用有限元方法以及MATLAB软件对一种低碳钢材料的悬臂梁损伤进行了损伤模拟,并对径向基神经网络进行了训练,以相关试验数据对该方法进行了验证,证明了其可行性,为进一步实现飞行器的结构健康监测打下了基础,具有一定的指导意义。
    Abstract: Combining the radial basis network and traditional methods of structural damage detection and taking damage depth as detect target, the cantilever beam damage in gap form was evaluated. The simulation of the damage to the structure by using the finite element method and MATLAB software, and the experimental data are used to validate the proposed method, and the results proved its feasibility, providing a basis for the further implementation of structural health monitoring of aircraft, which has a certain guiding significance.
  • [1] 史峰.MATLAB智能算法30个案例分析[M].北京:北京航空航天出版社,2011.
    [2] CAWLEY P, ADAMS R D. The location of defects in structures from measurements of the natural frequencies[J]. Journal of Strain Analysis,1979,14(2):49-57.
    [3] HEAM G, TESTA R B. Modal analysis for damage detection in structure[J]. Journal of Structure Engineering,1991,117(11):3042-3063.
    [4] 高芳清,金建明,高淑英.基于模态分析的结构损伤检测方法研究[J].西南交通大学学报,1998,33(1):108-113.
    [5] 饶文碧,吴代华.RBF神经网络及其在结构损伤识别中的应用研究[J].固体力学学报,2002,23(4):477-482.
    [6] 刘天亮,尚德广,任崇刚.悬臂梁试件损伤检测中固有频率指标的应用[J].无损检测,2012,30(4):31-34.
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-17
  • 刊出日期:  2014-01-09

目录

    /

    返回文章
    返回