• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

大直径管道磁致伸缩纵向导波传感器偏置磁场的优化设计

马宏伟, 张喆斯, 宋振华

马宏伟, 张喆斯, 宋振华. 大直径管道磁致伸缩纵向导波传感器偏置磁场的优化设计[J]. 无损检测, 2013, 35(9): 10-15.
引用本文: 马宏伟, 张喆斯, 宋振华. 大直径管道磁致伸缩纵向导波传感器偏置磁场的优化设计[J]. 无损检测, 2013, 35(9): 10-15.
MA Hong-Wei, ZHANG Zhe-Si, SONG Zhen-Hua. Bias Magnetic Field Optimization of Guided Wave Magnetostrictive Sensor for Large-diameter Pipes[J]. Nondestructive Testing, 2013, 35(9): 10-15.
Citation: MA Hong-Wei, ZHANG Zhe-Si, SONG Zhen-Hua. Bias Magnetic Field Optimization of Guided Wave Magnetostrictive Sensor for Large-diameter Pipes[J]. Nondestructive Testing, 2013, 35(9): 10-15.

大直径管道磁致伸缩纵向导波传感器偏置磁场的优化设计

基金项目: 

国家自然科学基金资助项目(No. 11072089)

详细信息
    作者简介:

    张喆斯(1988-),男,硕士研究生,主要从事结构损伤检测与加固技术研究工作。

  • 中图分类号: TG115.28

Bias Magnetic Field Optimization of Guided Wave Magnetostrictive Sensor for Large-diameter Pipes

  • 摘要: 偏置磁场的合理设计是磁致伸缩式纵向超声导波传感器设计的关键之一,大直径管道中偏置磁场由于管径较大的原因而呈现磁场强度弱、分布不均匀的特点。通过有限元软件模拟了直径为88 mm的大直径管道中各种磁路偏置磁场的分布情况,得到了不同截面磁场分布方差随磁路组个数增加呈现的对数衰减规律,中截面上偏置磁场与磁路组个数呈现线性递增的关系。结果表明5磁路组设计为88 mm大直径管道超声导波磁致伸缩传感器偏置磁场的最优化阵列组合。
    Abstract: The reasonable design of bias magnetic field is one of the key factors of longitudinal modes guided wave sensor based on magnetostrictive effect. The purpose of this paper is to study the distribution regularity of the bias magnetic field in large diameter pipes. Different magnetic circuits for an 88 mm diameter pipe was discussed based on numerical simulation and the distribution variance was used to measure the uniformity of the bias magnetic field. The result showed the distribution variance presented logarithm type attenuation with the increment of magnetic circuit number and finally a five-magnetic-circuit bias magnetic field was chosen for the magnetostrictive sensor.
  • [1] 焦敬品,何存富,吴斌,等.管道超声导波检测技术研究进展[J].实验力学,2002,17(1):1-9.
    [2] 程载斌,王志华,马宏伟.管道应力波检测技术及研究进展[J].太原理工大学学报,2003,34(3):426-431.
    [3] HAYSHI T, TAMAYAMA C, MURASE M. Wave structure analysis of guided waves in a bar with an arbitrary cross-section[J].Ultrasonics,2006,44:17-24.
    [4] LOWE M J S, ALLEYNE D N, CAWLEY P. Defect detection in pipes using guided waves[J].Ultrasonics,1998,36:147-154.
    [5] 何存富,刘增华,吴斌.传感器在管道超声导波检测中的应用[J].传感器技术,2004,23(11):5-8.
    [6] KWUN H, BARTELS K A. Magnetostrictive sensor technology and its applications[J].Ultrasonics,1998,36:171-178.
    [7] 叶宇峰,程茂,夏立,等.高温管道腐蚀状况的超声导波检测[J].轻工机械,2009,27(3):57-60.
    [8] KAILE W. Magnetostrictive Ultrasonic Testing of Materials[C]//Proceedings of the 4th International Conference on Non-destructive Testing. London:1964:291.
    [9] KWUN H, TELLER C M. Detection of fractured wires in steel cables using magnetostrictive sensors[J].Materials Evaluation,1994,52(4):503-507.
    [10] KWUN H, KIM S Y, LIGHT G M. The Magnetostrictive Sensor Technology for Long Range Guided Wave Testing and Monitoring of Structures[J].Materials Evaluation,2003,61(1):80-84.
    [11] KWUN H, HANLEY J J, HOLT A E. Detection of corrosion in pipe using the magnetostrictive sensor technique[J].NDT&E Int,1997,30(2):33.
    [12] 柯岩,武新军,康宜华,等.基于磁致伸缩效应的钢管导波检测可行性[J].无损检测,2007,29(3):113-116.
    [13] 武新军,徐江,沈功田.非接触式磁致伸缩导波管道无损检测系统的研制[J].无损检测,2010,32(3):166-170.
    [14] 金建华,申阳春.一种用于管道检测的磁致伸缩式周向超声导波传感器[J].传感技术学报,2004,4:576-579.
    [15] 柯岩.基于磁致伸缩导波的钢管无损检测实验研究[D].武汉:华中科技大学,2006:37-42.
    [16] 程涛.管道裂纹磁致伸缩导波检测传感器研制与开发[D].武汉:湖北工业大学,2012:37-51.
    [17] 王博文,黄淑瑛,黄文美.磁致伸缩材料与器件[M].北京:冶金工业出版社,2008:1-6.
    [18] 吴斌,刘秀成,何存富.兆赫兹纵向模态磁致伸缩传感器的设计及其在钢绞线中的试验研究[J].机械工程学报,2011,47(22):148-153.
    [19] 竺冉,吕福在,唐志峰,等.磁致伸缩纵向导波传感器中偏置磁场的优化设计[J].传感技术学报,2011,24(3):371-374.
    [20] 柯松,张辉,倪泽均,等.常用钢材磁特性曲线速查手册[M].北京:机械工业出版社,2003:14-85.
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-25
  • 刊出日期:  2013-09-09

目录

    /

    返回文章
    返回