• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

超声检测技术的最新研究与应用

梁宏宝, 朱安庆, 赵 玲

梁宏宝, 朱安庆, 赵 玲. 超声检测技术的最新研究与应用[J]. 无损检测, 2008, 30(3): 174-177.
引用本文: 梁宏宝, 朱安庆, 赵 玲. 超声检测技术的最新研究与应用[J]. 无损检测, 2008, 30(3): 174-177.
LIANG Hong-Bao, ZHU An-Qing, ZHAO Ling. The Newly Research and Application of Ultrasonic Testing Technique[J]. Nondestructive Testing, 2008, 30(3): 174-177.
Citation: LIANG Hong-Bao, ZHU An-Qing, ZHAO Ling. The Newly Research and Application of Ultrasonic Testing Technique[J]. Nondestructive Testing, 2008, 30(3): 174-177.

超声检测技术的最新研究与应用

基金项目: 

黑龙江省科学技术攻关资助项目(GC05A521)

详细信息
    作者简介:

    梁宏宝(1966-),男,教授,硕士研究生导师,从事无损检测和虚拟现实等方面研究,曾获第八届国家霍英东基金奖。

  • 中图分类号: TG115.28

The Newly Research and Application of Ultrasonic Testing Technique

  • 摘要: 介绍了超声检测技术的最新进展,包括非接触超声检测方法、信号处理方法和模式识别技术在超声检测上的应用、研究热点和发展前景,对不同非接触超声检测方法进行了比较。超声检测新技术的出现,使得超声检测中定性、定位和定量的可靠性得到提高,也使在高温和复杂结构中的超声检测变成现实。
    Abstract: Some recent development of ultrasonic testing, such as the application, research status and development trend of non-contact acoustic transducer was introduced, and its advantages and disadvantages were reviewed. Also, the signal processing method and model identification were described, which could improve the location accuracy and inspection reliability. Those new method and technology could solve some difficulties confronted while inspecting in conditions of high temperature and complicated structure.
  • [1] 罗雄彪,陈铁群.超声无损检测的发展趋势[J].无损探伤,2004,28(3):1-5.
    [2] Blomme E, Bulcaen D, Declercq F. Air-coupled-ultrasonic NDE, experiments in the frequency range 750 kHz ~2 MHz[J]. NDT & E International,2002,35(7):417-426.
    [3] Stoessel R, Krohn N. Air-coupled ultrasound inspection of various materials[J]. Ultrasonics,2002,(40):159-163.
    [4] Qian M L, Hu W X, Xu W J, et al. Determination of surface elastic constants of CVD diamond sheet by laser ultrasonics[J]. Rev Progress in QNDE,2001,20(557):1383-1388.
    [5] Duquennoy M, Qraftouh M, ML Jenat F, et al. Ultrasonic characterization of residual stresses in steel rods using a laser line source and piezoelectric transducers[J]. NDT and E International,2001,34(ER5):355-362.
    [6] Matsumoto Takahiro, Nose Tetsuro. Measure ment of high-temperature elastic properties of ceramics using a laser ultrasonic method[J]. Journal of the American Ceramic Scienty,2001,84(7):1521-1525.
    [7] Matsumoto Takahiro, Nagata Yasuaki. Laser ultrasonics for measurements of high-temperature elastic properties and internal temperature distribution[J]. Review of Scientific Instruments,2001,72(6):2777-2783.
    [8] Monchalin J P, Aussel J D, Bouchard P, et al. Laser-ultrasonic for industrial applications[J]. Rev Prog Quant NDE,2000,7B(10):1607-1714.
    [9] Woch S C, Zhou Q. Behavior of laser-induced ultrasonic waves radiated from a wet surface. Part I: Theory, Part II: Experimenta l work[J]. Appl Phys,2001,89(6):3469-3477,3478-3485.
    [10] 刘镇清,刘 骁.超声无损检测的若干新进展[J].无损检测,2000,22(9):403-405.
    [11] 陈积懋.声学综合无损检测技术[J].中国工程科学,2000,2(4):64-69.
    [12] 何存富,吴 斌,范晋伟.超声柱面导波技术及其应用研究进展[J].力学进展,2001,31(2):203-214.
    [13] 高晋占.微弱信号检测[M].北京:清华大学出版社,2005.
    [14] 简晓明,李明轩,张建生.层状介质界面超声检测的理论分析和自适应噪声抵消处理[J].声学学报,2000,25(4):351-356.
    [15] 刘 洪,Sacchi M D.应用线性预测和自适应加权最小二乘进行非均匀带限信号去假频[C].CPS/ SEG2004国际地球物理会议论文集.北京:2004.
    [16] 骆长江,俞能海.基于分块自适应预测的超声测井图象无损压缩编码[J].中国图象图形学报,2001,6(A):168-171.
    [17] 王修信,胡维平.基于小波分析的超声医学图像非线性增强[J].计算机工程与应用,2005,41(18):197-199.
    [18] 王建栋,冯前进,陈武凡.基于模糊增强的医学超声图像分割[J].中国医学物理学杂志,2005, 22(2):450-452.
    [19] 张小飞,王 茁,周有鹏.超声检测中的噪声处理[J].无损检测,2002,24(5):200-202.
    [20] 简晓明,李明轩.小波变换和自适应噪声抵消在闭合裂纹超声检测中的应用[J].声学学报,2000,25(2):97-102.
    [21] 顾向华,郑祥明,雷永平,等.改进的自适应滤波方法及其在粗晶材料超声检测中的应用[J].无损检测,2003,25(10):504-506.
    [22] 罗雄彪,万 英.基于小波变换的超声信号自适应消噪方法研究[J].无损检测,2005,27(12):617-620.
    [23] 张海燕,刘镇清.人工智能及其在超声无损检测中的应用[J].无损检测,2001,23(8):356-360.
    [24] 刘镇清,张海燕.人工神经网络及其在超声检测中的应用[J].无损检测,2001,23(5):221-225.
    [25] 王宏涛,刘利锋,周来水,等.基于模态分析和BP神经网络的复合材料脱层损伤监测研究[J].中国机械工程,2005,16(3):239-242.
    [26] 简晓明,李明轩.超声检测中人工神经网络对缺陷定量评价[J].声学学报,2000,25(1):71-77.
    [27] Ciccan R, Petulescu P. The use of the neural networks in the recongnition of the autosonitic steel types[J]. NDT & E Int,2000,33(2):85-89.
    [28] Vicen R, Gil R, Jarabo P, et al. Non-linear filtering of ultrasonic signals using neural networks[J]. Ultrasonics,2004,42(19):355-359.
    [29] Kim S D, Shin D H, Lim L M, et al. Designed strength identification of concrete by ultrasonic signal processing based on artificial intelligence techniques[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control,2005,52(7):1145-1151.
    [30] Unnikrishnan N, Mahajan A, Chu T. Intelligent system modelling of a three-dimensional ultrasonic positioning system using neural network and genetic algorithms Proceedings of the Institution of Mechanical Engineers -- Part I[J]. Journal of Systems & Control Engineering,2003,217(5):367-377.
    [31] Lin F J, Wai R J, Huang P K. Two-axis motion control system using wavelet neural network for ultrasonic motor drives[J]. IEE Proceedings -- Electric Power Applications,2004,151(5):613-621.
    [32] 张晓光,李 浴,徐健健.基于神经网络的焊缝缺陷识别专家系统[J].计算机工程,2003,29(17):22-23.
    [33] 汪 锐,郑晓丹,何丹农.基于人工神经网络的冲裁件缺陷诊断专家系统[J].上海交通大学学报,2001,35(7):977-980.
    [34] Faa-Jeng Lin, Rong-Jong Wai, Mu-Ping Chen. Wavelet neural network control for linear ultrasonic motor drive via adaptive sliding-mode technique[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control,2003,50(6):686-698.
计量
  • 文章访问数:  8
  • HTML全文浏览量:  3
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-09-17
  • 刊出日期:  2008-03-09

目录

    /

    返回文章
    返回