高级检索

    裂纹漏磁场的数值模拟

    Numerical Simulation of Crack Magnetic Flux Leakage Field

    • 摘要: 漏磁检测技术广泛应用于储罐底板扫查、管道内壁缺陷检测中。文章以裂纹漏磁场为研究对象,以麦克斯韦方程组为理论基础,以数值模拟为手段,建立裂纹漏磁场三维静态数值模拟模型,用数值模拟和试验方法研究裂纹深度、宽度、裂纹倾斜角度以及裂纹间距等参数对裂纹漏磁场的影响,得到裂纹参数与裂纹漏磁场幅值之间的关系。结果表明:裂纹倾斜角度对裂纹漏磁场幅值影响显著,因此在工程实际检测中,要从不同方向进行漏磁扫描,以防止漏检;当两条裂纹间距<5 mm时,裂纹漏磁场将产生叠加。数值模拟结果与试验数据较为一致,表明所用数值方法的有效性。文章所得结论对裂纹漏磁检测工程实践有重要的参考意义。

       

      Abstract: Magnetic flux leakage(MFL) testing is widely used to inspect and characterize defects in pipelines, storage tanks and other structures. In this paper, based on the Maxwell Equations, numerical simulation and experimental research of crack magnetic flux leakage field were carried out. The threedimensional models of cracks were established, the influence of the generalized crack parameters to the magnetostatic MFL field, including depth, width, inclination angle and crack spacing, was discussed. The relationship between defect parameters and MFL amplitude was obtained. The amplitude was significantly affected by the inclination angle. Therefore, single direction inspection could lead to undetected in practice. While the two cracks interval was less than 5 mm, the MFL fields would overlap. Furthermore, the experimental investigations were developed, and the results agreed well with that of the simulation. The conclusions could provide valuable reference for inspection.

       

    /

    返回文章
    返回