• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

基于功率谱密度分析的脉冲涡流缺陷分类法

彭英, 吴应发, 邱选兵, 刘路路, 魏计林, 陈长飞

彭英, 吴应发, 邱选兵, 刘路路, 魏计林, 陈长飞. 基于功率谱密度分析的脉冲涡流缺陷分类法[J]. 无损检测, 2014, 36(12): 8-11.
引用本文: 彭英, 吴应发, 邱选兵, 刘路路, 魏计林, 陈长飞. 基于功率谱密度分析的脉冲涡流缺陷分类法[J]. 无损检测, 2014, 36(12): 8-11.
PENG Ying, WU Ying-fa, QIU Xuan-bing, LIU Lu-lu, WEI Ji-lin, CHEN Chang-fei. Defect Classification by Pulsed Eddy Current Technique Based-on Power Spectral Density Analysis[J]. Nondestructive Testing, 2014, 36(12): 8-11.
Citation: PENG Ying, WU Ying-fa, QIU Xuan-bing, LIU Lu-lu, WEI Ji-lin, CHEN Chang-fei. Defect Classification by Pulsed Eddy Current Technique Based-on Power Spectral Density Analysis[J]. Nondestructive Testing, 2014, 36(12): 8-11.

基于功率谱密度分析的脉冲涡流缺陷分类法

基金项目: 

国家自然基金资助项目(61178067)

山西省青年科学基金资助项目(2013021004-4)

太原科技大学博士启动基金资助项目(20132011)。

详细信息
    作者简介:

    彭英(1979-), 女, 博士研究生, 主要从事电磁无损检测、裂纹扩展等研究工作。

  • 中图分类号: TG115.28

Defect Classification by Pulsed Eddy Current Technique Based-on Power Spectral Density Analysis

  • 摘要: 在巨磁阻脉冲涡流传感器(GMR-PEC)上实现平板导体表面和次表面裂纹缺陷以及孔缺陷进行精确分类。在频率分析基础上, 提出了一种新的缺陷特征量——涡流差分响应信号的功率谱密度。由于主成分分析具有良好的降维特性, 采用主成分分析结合线性判别分类(PCA-LDA)和贝叶斯分类(PCA-Bayes)进行缺陷的分类。结果表明, 基于新的特征量的分类方法能实现导体表面和次表面的裂纹和孔缺陷的精确分类, 在脉冲涡流自动测量领域具有潜在的意义。
    Abstract: The main objective of this study aims to precisely classify the cracks and cavities in surface and sub-surface by using features-based giant-magneto-resistive pulsed eddy current (GMR-PEC) sensor. A new defect feature named as the power spectral density analysis of the direct differential PEC response is carried out based-on the amplitude spectrum. Principal component analysis is designed to reduce the dimensional index with the ability of supplying the lower dimensional feature. The PCA combined linear discriminatary analysis (PCA-LDA) and the Bayesian classifier (PCA-Bayes) are both applied for defect classification. Consequently, the experimental results demonstrate that the cracks and cavities in surface and sub-surface can be classified satisfactorily by the proposed methods using the new feature, which have the potential for gauging automatic in-situ inspection for PEC.
  • [1] SOPHIAN A, TIAN G Y, TAYLOR D, et al. A feature extraction technique based on principal component analysis for pulsed eddy current NDT[J]. NDT & E International, 2003,36:37-41.
    [2] ADEWALE I D and GUI YUI T. Decoupling the influence of permeability and conductivity in Pulsed Eddy-Current measurements[J]. IEEE Transactions on Magnetics,2013,49:1119-1127.
    [3] SOPHIAN A, TIAN G Y, TAYLOR D, et al. Design of a pulsed eddy current sensor for detection of defects in aircraft lap-joints[J]. Sensors and Actuators A: Physical, 2002,101:92-98.
    [4] SHEJUAN X, CHEN Z, TAKAGI T, et al. Efficient numerical solver for simulation of Pulsed Eddy-Current testing signals[J]. IEEE Transactions on Magnetics, 2011,47:4582-4591.
    [5] SHEJUAN X, ZHENMAO C, HONG-EN C, et al. Sizing of wall thinning defects using pulsed eddy current testing signals based on a hybrid inverse analysis method[J]. IEEE Transactions on Magnetics,2013,49:1653-1656.
    [6] QIU X, ZHANG P, WEI J, et al. Defect classification by pulsed eddy current technique in con-casting slabs based on spectrum analysis and wavelet decomposition[J]. Sensors and Actuators A: Physical, 2013,203:272-281.
    [7] HE Y, LUO F, PAN M, et al. Defect edge identification with rectangular pulsed eddy current sensor based on transient response signals[J]. NDT & E International, 2010,43:409-415.
    [8] HE Y, LUO F, PAN M, et al. Defect classification based on rectangular pulsed eddy current sensor in different directions[J]. Sensors and Actuators A: Physical,2010,157:26-31.
    [9] HE Y, PAN M, LUO F, et al. Support vector machine and optimised feature extraction in integrated eddy current instrument[J]. Measurement,2013,46:764-774.
    [10] TIAN G, SOPHIAN A, TAYLOR D, et al. Wavelet-based PCA defect classification and quantification for pulsed eddy current NDT[J]. in Science, Measurement and Technology, IEE Proceedings, 2005, 141-148.
    [11] KIWA T, HAYASHI T, KAWASAKI Y, et al. Magnetic thickness gauge using a Fourier transformed eddy current technique[J]. NDT & E International, 2009,42:606-609.
    [12] YANG B, LUO F, ZHANG Y, et al. Quantification and classification of cracks in aircraftmulti-layered structure[J]. Jixie Gongcheng Xuebao(Chinese Journal of Mechanical Engineering), 2006,42:63-67.
    [13] KIWA T, KAWATA T, YAMADA H, et al. Fourier-transformed eddy current technique to visualize cross-sections of conductive materials[J]. NDT & E International, 2007,40:363-367.
    [14] HE Y, PAN M, LUO F, et al. Reduction of lift-off effects in pulsed eddy current for defect classification[J]. IEEE Transactions on Magnetics, 2011,47:4753-4760.
    [15] PAN M, HE Y, TIAN G, et al. PEC frequency band selection for locating defects in two-layer aircraft structures with air gap variations[J]. Instrumentation and Measurement, IEEE Transactions on, 2012,62:2849-2856.
    [16] HE Y, PAN M, LUO F, et al. Pulsed eddy current imaging and frequency spectrum analysis for hidden defect nondestructive testing and evaluation[J]. NDT & E International, 2011,44:344-352.
    [17] TIAN G Y, HE Y, ADEWALE I, et al. Research on spectral response of pulsed eddy current and NDE applications[J]. Sensors and Actuators A: Physical, 2013,189:313-320.
    [18] QIU X, WEI C, CUI X, et al. Real-time pre-processing of the pulsed eddy current signal from continuous casting slabs[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2013, 55:136-141.
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-24

目录

    /

    返回文章
    返回