Analysis on Acoustic Emission Signals of Q345R Steel Low Temperature Tensile Process Based on K-means Clustering
-
摘要: 应用K均值聚类分析方法分割Q345R钢的低温拉伸声发射信号,以区分开塑性变形信号和噪声信号。通过关联分析和波形分析,得出低温对声发射信号的影响,以及塑性变形及脆性断裂信号的主要分布频率,为低温压力容器声发射检测提供试验基础。Abstract: Plastic deformation acoustic emission signals and noise signals during low temperature tensile process were separated based on K-means clustering. Judging from association analysis and waveform analysis, the influence of low temperature on the acoustic emission signals was obtained and the main frequency distribution of plastic deformation and brittle fracture were concluded, providing experiment basis for the low temperature pressure vessels acoustic emission testing.
-
Keywords:
- Acoustic emission /
- K-means clustering /
- Low temperature /
- Tensile process
-
-
[1] 陈开路.声发射检测技术及其在电力系统的应用前景[J].福建电力与电工,2001,21(3):58-59. [2] 徐彦廷,戴光,张宝琪.16MnR钢制拉伸试样在常、高温下的声发射特性试验研究[J] .大庆石油学院学报,1995,19(2):75-77. [3] 唐晓锋,赵院婷,高浩,等.低温压力容器制造质量控制[C]//第三届十省区市机械工程学会科技论坛暨黑龙江省机械工程学会2007年年会论文(摘要)集.黑龙江:[出版者不详], 2007. [4] 李红英,丁常伟,胡少旭.热处理工艺对 16MnR 钢脆性转变温度的影响[J].热加工工艺,2006,35(20):55-57. [5] LIKAS A, VLASSIS N, VERBEEK J. The global k-means clustering algorithm[J].Pattern Recognition,2003,36(2):451-461.
计量
- 文章访问数: 0
- HTML全文浏览量: 0
- PDF下载量: 0