• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

基于有限数据的电磁检测仪渗碳层深度检测灵敏度预测

贾健明

贾健明. 基于有限数据的电磁检测仪渗碳层深度检测灵敏度预测[J]. 无损检测, 2011, 33(1): 9-11.
引用本文: 贾健明. 基于有限数据的电磁检测仪渗碳层深度检测灵敏度预测[J]. 无损检测, 2011, 33(1): 9-11.
JIA Jian-Ming. A Sensitivity Prediction in the Depth of Carburized Layer by Limited-Data Electromagnetic Detectors[J]. Nondestructive Testing, 2011, 33(1): 9-11.
Citation: JIA Jian-Ming. A Sensitivity Prediction in the Depth of Carburized Layer by Limited-Data Electromagnetic Detectors[J]. Nondestructive Testing, 2011, 33(1): 9-11.

基于有限数据的电磁检测仪渗碳层深度检测灵敏度预测

基金项目: 

江苏省“六大人才高峰”资助项目(06-E-036);江苏省常州市工业科技攻关计划资助项目(CE2008070)

详细信息
    作者简介:

    贾健明(1964-),男,副教授,高级工程师,工学学士,主要研究机电一体化及自动控制技术、无损检测技术、机电一体化技术教学与研究。

  • 中图分类号: TG156.8+1;TG115.28

A Sensitivity Prediction in the Depth of Carburized Layer by Limited-Data Electromagnetic Detectors

  • 摘要: 应用电磁无损检测仪检测钢铁件渗碳层深度时必须标定该仪器的灵敏度。然而由于渗碳工艺和标准渗碳层深度检测方法的限制,无法利用标准试样标定的方法评价电磁无损检测仪对薄渗碳层深度的检测灵敏度。为此,应用灰色预测理论,研究了一种基于有限渗碳层深度集的灵敏度预测方法。在现有有限渗碳层深度集的基础上,通过数据预测,扩展出虚拟深度,从而预测仪器的灵敏度。试验表明,利用GM(1.1)模型对渗碳层深度检测数据建模时 ,其模型平均精度高于95%;利用GM(1.1)模型进行渗碳层深度的预测时 ,预测的最大误差在5%以内。
    Abstract: Sensitivity must be calibrated when nondestructive electromagnetic testing instrument is used to detect the depth of carburized layer of steel piece. However, due to the limitations of carburization technology and the method of testing the depth of standard carburized layer, it is rather difficult to evaluate the sensitivity testing concerning the depth of thin carburized layer by standard sample calibration. Hence, grey prediction theory is applied to make a study on the sensitivity prediction method based on a limit set of carburized layer depth. It is followed by the prediction of instrument sensitivity after the expansion of virtual depth via data. Experiments indicate that the average precision is above 95% when GM(1.1) Model is applied in testing data modeling of the depth of carburized layer, while the maximum error of prediction is within 5% when GM (1.1) is used in the prediction of the depth of carburized layer.
  • [1] 贾健明,陈剑鹤.基于RBF神经网络的渗碳层深度电磁无损检测[J].仪器仪表学报,2006,27(12):1632-1635.
    [2] 严浙平,陈涛,秦政,等.灰色动态预测在AUV传感器故障诊断中的应用[J].传感技术学报,2008,21(6):1002-1006.
    [3] 陈向东,夏军,徐倩.灰色微分动态模型的自忆预报模式[J].中国科学(E辑),2009,39(2):341-350.
    [4] 陈坚,白海瑞,李娟,等.灰色理论在泵站机电设备故障诊断中的应用[J].武汉大学学报(工学版),2008,41(6):29-32.
    [5] 费胜巍,孙宇.融合粗糙集与灰色理论的电力变压器故障预测[J].中国电机工程学报,2008,28(16):154-160.
    [6] 邓聚龙.灰色系统理论教程 [M].武汉:华中理工大学出版社,1990:189-214.
    [7] 邓聚龙.灰预测与灰决策 [M ].武汉:华中科技大学出版社,2002:97-155.
计量
  • 文章访问数:  3
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-02-27
  • 刊出日期:  2011-01-09

目录

    /

    返回文章
    返回