• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

形态学滤波窄裂纹检测与目标识别

李仁兴, 张毅, 柏连发, 陈钱, 顾国华

李仁兴, 张毅, 柏连发, 陈钱, 顾国华. 形态学滤波窄裂纹检测与目标识别[J]. 无损检测, 2009, 31(10): 796-799.
引用本文: 李仁兴, 张毅, 柏连发, 陈钱, 顾国华. 形态学滤波窄裂纹检测与目标识别[J]. 无损检测, 2009, 31(10): 796-799.
LI Ren-Xing, ZHANG Yi, BAI Lian-Fa, CHEN Qian, GU Guo-Hua. Morphological Filtering Slightness Crack Detection and Objects Identification[J]. Nondestructive Testing, 2009, 31(10): 796-799.
Citation: LI Ren-Xing, ZHANG Yi, BAI Lian-Fa, CHEN Qian, GU Guo-Hua. Morphological Filtering Slightness Crack Detection and Objects Identification[J]. Nondestructive Testing, 2009, 31(10): 796-799.

形态学滤波窄裂纹检测与目标识别

详细信息
    作者简介:

    李仁兴(1965-), 男, 高级实验师, 硕士, 主要从事材料及其成形与检测的教学和科研工作。

  • 中图分类号: TG115.28

Morphological Filtering Slightness Crack Detection and Objects Identification

  • 摘要: 荧光磁粉探伤是工件表面缺陷的一种非接触式检测手段, 传统的基于人工视觉检测裂纹的方法耗人力、耗时、不精确、花费高、可靠性无法保证。现代工业检测技术要求工件表面缺陷检测自动完成, 而工件表面状况、真伪裂纹缺陷、工况条件等使得现有的检测识别方法难以满足工件表面缺陷自动检测识别的需要。分析了工件表面荧光磁粉图像特征及裂纹缺陷特征; 研究了基于分块阈值的数学形态学梯度算子图像边缘检测算法; 根据裂纹缺陷的长宽比、圆形度等特征, 设计了基于Fisher线性判别方法的工件裂纹缺陷识别方法。以此为基础的荧光磁粉探伤工件裂纹缺陷自动检测识别技术, 应用于火车轮轴检测线实时检测, 裂纹缺陷的有效检出率达90%。
    Abstract: Magnetic powder detection is an important method for work-piece superficial crack detection. Traditional magnetic powder crack detection is manpower consuming, time consuming, high expenses, low precision, and fallibility. Modern industrial detection technology requires work-piece crack auto-detection. Because of exterior status, veritable or feigned crack object, site condition, etc., existing method can not successfully auto-detect and identify work-piece cracks. Fluorescent magnetic powder image and crack image characteristics are analyzed, morphological grads arithmetic operators image fringe detection based on sub-area threshold is studied, crack identification arithmetic based on Fisher linear discrimination is designed according to long-width ratio and round shape degree character. Cart-wheel-axis crack detection line equipped with this auto-detection and identification technology got an efficient crack detection ratio as high as 90%.
  • [1] Bakunov A S, Korolev A Yu, Kudryavtsev D A, et al. A set of magnetic fluorescent-penetrant inspection[J]. Russian Journal of Nondestructive Testing,2005,41(3):170-174.
    [2] Nishimine Tamotsu, Tsuyama Osamu, Tanaka Toshimitsu, et al. Automatic magnetic particle testing system for square billets[C]// Industry Application Conferuce,[s.L.]:[s.n.],1995.
    [3] 刘磊, 刘秀兰, 俞庠.全自动荧光磁粉检测系统的研究[J].机械工程与自动化,2004(6):12-14.
    [4] 闫成新, 桑农, 张天序.基于图论的图像分割研究进展[J].计算机工程与应用,2006,42(5):11-14.
    [5] Geveaux P, Kohler S, Miteran J, et al. Comparison between two classification methods, Application to defects detection by artificial vision in industrial field proceedings[C]// The 8th SPIE Conference on Machine Vision Applications in Industrial Ispection.[s.L.]:[s.n.],2000:248-254.
    [6] 朱立新, 夏德深.目标自适应图像分块与小目标提取[J].计算机工程与应用. 2005,41(25):88-90.
计量
  • 文章访问数:  2
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-12-30
  • 刊出日期:  2009-10-09

目录

    /

    返回文章
    返回