• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

基于碳纳米管压阻效应的复合材料结构健康监测技术

朱永凯, 陈盛票, 田贵云, 潘仁前, 王海涛

朱永凯, 陈盛票, 田贵云, 潘仁前, 王海涛. 基于碳纳米管压阻效应的复合材料结构健康监测技术[J]. 无损检测, 2010, 32(9): 664-669.
引用本文: 朱永凯, 陈盛票, 田贵云, 潘仁前, 王海涛. 基于碳纳米管压阻效应的复合材料结构健康监测技术[J]. 无损检测, 2010, 32(9): 664-669.
ZHU Yong-Kai, CHEN Sheng-Piao, TIAN Gui-Yun, PAN Ren-Qian, WANG Hai-Tao. Structure Health Monitoring Technology for Composites Based on Piezoresistive Effect of Carbon Nanotubes[J]. Nondestructive Testing, 2010, 32(9): 664-669.
Citation: ZHU Yong-Kai, CHEN Sheng-Piao, TIAN Gui-Yun, PAN Ren-Qian, WANG Hai-Tao. Structure Health Monitoring Technology for Composites Based on Piezoresistive Effect of Carbon Nanotubes[J]. Nondestructive Testing, 2010, 32(9): 664-669.

基于碳纳米管压阻效应的复合材料结构健康监测技术

详细信息
    作者简介:

    朱永凯(1975-), 博士, 副教授, 主要研究方向为结构健康监测、智能传感技术。

  • 中图分类号: TG115.28

Structure Health Monitoring Technology for Composites Based on Piezoresistive Effect of Carbon Nanotubes

  • 摘要: 复合材料结构健康监测技术是一个重要的发展方向, 不断出现新的监测方法, 而碳纳米管(CNT)因具有优越的传感特性得到了广泛的关注。介绍了碳纳米管及其压阻效应的形成机理, 并总结了碳纳米管膜所具有的压阻特性及其相关的应用研究进展, 设计了利用碳纳米管压阻效应制成的聚合物薄膜传感器在复合材料结构健康监测(SHM)中进行应用的研究方案。其中, 传感器采用表面贴覆的方法和阵列式监测原理, 结合特征提取、模式识别等信号处理方法, 实现对复合材料的早期损伤及其类型进行预测、识别和定位等功能。
    Abstract: Structure health monitoring technology for composites is an important development direction and new monitoring methods are emerged. Carbon nanotubes(CNTs) have been widely studied because of their excellent sensors properties. This paper introduces the mechanism of piezoresistive effect of CNTs, and summarizes the piezoresistive properties of CNTs film and researches of the related applications. The paper then designs the experimental solution of the structural health monitoring(SHM) of composites using CNT polymer film sensors based on the piezoresistive effect. Sensors based on matrix-monitoring principle are pasted on surface. Signal processing methods with feature extraction and pattern recognition are used to predict, identify and locate early failure and the failure style of composites.
  • [1] Housner G W. Structural control: past, present, and future[J]. Journal of Engineering Mechanics, 1997, 123(9): 897-971.
    [2] 樊尚春. 传感器技术及应用[M].北京: 北京航空航天大学出版社, 2004.
    [3] Chang L.微机电系统基础[M].黄庆安, 译.北京: 机械工业出版社, 2007.
    [4] Spitalsky Z. Carbon nanotube– polymer composites: Chemistry, processing, mechanical and electrical properties[J]. Progress in Polymer Science, 2010, 35(3): 1-45.
    [5] Galanov B A, Galanov S B. Stress-strain state of multi-wall carbon nanotube under internal pressure[J]. Nano-particle Res, 2002(4): 207-214.
    [6] Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991(354): 56-58.
    [7] Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1 nm diameter[J]. Nature, 1993(363): 603-605.
    [8] Functionalised carbon nanotubes as therapeutic vectors[EB/OL]. http: //www-ibmc.u-strasbg.fr/ict/vectorisation/nanotubes_eng.shtml.
    [9] Pham G T. Characterization and modeling of piezo-resistive properties of carbon nanotube-based conductive polymer composites[D]. Florida: Florida State University, 2008.
    [10] Dang ZM. Supersensitive linear piezoresistive property in carbon nanotubes∕silicone rubber nanocomposites[J]. Applied Physics, 2008, 104(2): 024114-024114-6.
    [11] Cao C L. Temperature dependent piezoresistive effect of multi-walled carbon nanotube films[J]. Diamond & Related Materials, 2007, 16(2): 388-392.
    [12] Park M. Strain dependent electrical resistance of multi-walled nanotube/polymer composite films[J]. Nanotechnology, 2008, 19(5): 5705-5712.
    [13] Pham G T. Processing and modeling of conductive thermoplastic/carbon nanotube films for strain sensing[J]. Composites: Part B, 2008, 39(1): 209-216.
    [14] Kang I. Introduction to carbon nanotubes and nanofiber smart materials[J]. Composites: Part B, 2006, 37(6): 382-394.
    [15] Kang I. The bulk piezoresistive characteristics of carbon nanotube composites for strain sensing of structures[J]. Nanoscience and Nanotechnology, 2007, 7(11): 3736-3739.
    [16] Song X. Controllable fabrication of carbon nanotube-polymer hybrid thin film for strain sensing[J]. Microelectronic Engineering, 2009, 86: 2330-2333.
    [17] 张毅.碳纳米管膜的压阻效应及其相关力学性质研究[D].重庆: 重庆大学, 2005.
    [18] Gau C. Piezoresistive characteristics of MWNT nanocomposites and fabrication as a polymer pressure sensor[J]. Nanotechnology, 2009, 20(18): 1-11.
    [19] 韩向宇.管径相关的多壁碳纳米管膜的压阻效应[J].功能材料, 2007, 38(2): 323-325.
    [20] 韩向宇.功能化碳纳米管及其性质研究[D].重庆: 重庆大学, 2007.
    [21] Tombler T W. Reversible electromechanical Characteristics of Carbon Nanotubes under Local-Probe Manipulation[J]. Nature, 2000, 405: 769-772.
    [22] Vidhate S. Time dependent piezoresistive behavior of polyvinylidene fluoride/carbon nanotube conductive composite[J]. Materials Letters, 2009, 63(21): 1771-1773.
    [23] Jain S. Building smart materials based on carbon nanotubes[J]. Smart Structures and Materials 2004: Smart Electronics, Mems, Biomems and Nanotechnology, 2004, 5389: 167-175.
    [24] Kang I. Carbon Nanotube Smart Materials[D]. USA: University of Cincinnati, 2005.
    [25] Kang I. A carbon nanotube strain sensor for structural health monitoring[J]. Smart Materials & Structures, 2006, 15: 737-748.
    [26] Kang I. Carbon Nanotube Composites Multi-Sensing Characteristics Based on Electrical Impedance Properties[C]. 2nd International Conference on Nanoscale Materials and Engineering, 2008, 9: 7364-7367.
    [27] Nofar M. Failure detection and monitoring in polymer matrix composites subjected to static and dynamic loads using carbon nanotube networks[J]. Composites Science and Technology, 2009, 69(10): 1599-1606.
    [28] Schulz M J, Sundaresan M J. Smart Sensor System for Structural Conditon Monitoring of Wind Turbines[R]. National Renewable Energy Laboratory, 2006.
计量
  • 文章访问数:  1
  • HTML全文浏览量:  0
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 刊出日期:  2010-09-09

目录

    /

    返回文章
    返回