• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

探地雷达技术的回顾与展望

李想堂, 王端宜, 张肖宁

李想堂, 王端宜, 张肖宁. 探地雷达技术的回顾与展望[J]. 无损检测, 2006, 28(9): 479-483.
引用本文: 李想堂, 王端宜, 张肖宁. 探地雷达技术的回顾与展望[J]. 无损检测, 2006, 28(9): 479-483.
LI Xiang-tang, WANG Duan-yi, ZHANG Xiao-ning. Review and Prospects of Ground Penetrating Radar Technology[J]. Nondestructive Testing, 2006, 28(9): 479-483.
Citation: LI Xiang-tang, WANG Duan-yi, ZHANG Xiao-ning. Review and Prospects of Ground Penetrating Radar Technology[J]. Nondestructive Testing, 2006, 28(9): 479-483.

探地雷达技术的回顾与展望

详细信息
    作者简介:

    李想堂(1980~),男,在读博士,主要从事道路工程结构无损检测的研究工作。

  • 中图分类号: TG115.28

Review and Prospects of Ground Penetrating Radar Technology

  • 摘要: 百余年来,探地雷达在技术上逐步成熟,在地下探测领域发挥着越来越重要的作用。主要介绍国外在探地雷达的设备研制、数据处理和具体应用等方面的发展历程及研究动向,也简要介绍了探地雷达在我国的发展情况。
    Abstract: The past 100 years has witnessed the utility of ground penetrating radar (GPR) to solve a variety of problems in subsurface characterization and there is an overall sense of the technology reaching a level of maturity. The brief history of GPR is reviewed, including its hardware system, data processing techniques and various practical applications, both the value and the limitations of the nondestructive testing method are analyzed and its current trends of progress was discussed.
  • [1] Annan AP. GPR—history, trends, and future developments[J]. Subsurface Sensing Technologies and Applications,2002,3(4):253-270.
    [2] Bailey JT, Evans S. Radio echo sounding of polar ice sheets[J]. Nature,1964,204(4957):420-421.
    [3] Walford MER. Radio echo sounding through an ice shelf[J]. Nature,1964,204(4956):317-319.
    [4] Nolan RC, Egghart HC, Mittleman L, et al. MERADCOM mine detection program: 1960-1980[R]. Fort Belvoir, VA: US Army Mobility Equipment Research Development Command, Report 2294.1980.
    [5] Huston D, Fuhr P, Maser K, et al. Nondestructive Testing of Reinforced Concrete Bridges using Radar Imaging Techniques[R]. VT: Department of Mechanical Engineering, College of Engineering & Mathematics, University of Vermont, Technical Report NETCR 94-2.2002.
    [6] Olhoeft GR. The Electrical Properties of Permafrost\[D\]. Toronto: University of Toronto,1975.
    [7] US Patent 3 967 282 and 4 062 010, Young JD, Caldecott R. Underground pipe detector[P]. US:1976.
    [8] Moffatt DL, Puskar RJ. A subsurface electromagnetic pulse radar[J]. Geophysics,1976,41(3):506-518.
    [9] Eberle AC, Young JD. Development and field testing of a new locator for buried plastic and metallic utility lines[A]. Transportation Research Board\[C\]. Washington, DC: National Academy of Science,1977,(631):47-51.
    [10] Chan LC, Moffatt DL, Peters L. A characterization of subsurface radar targets[J]. Proceedings of the IEEE,1979,67(7):991-1000.
    [11] Leckebusch J. Ground-penetrating radar: a modern three-dimensional prospection method[J]. Archaeological Prospection,2003,10(4):213-240.
    [12] Fisher E, McMechan GA, Annan AP. Acquisition and processing of wide-aperture ground-penetrating radar data[J]. Geophysics,1992,57(3):495-504.
    [13] Madrid JJM, Corredera JRC, Vela GD, et al. Detection of shallowly buried objects with subsurface radars[A]. Geoscience and Remote Sensing Symposium on Better Understanding of Earth Environment\[C\]. Tokyo: 1993.
    [14] Bourgeois JM, Smith GS. A full electromagnetic simulation of a ground penetrating radar: theory and experiment\[A\]. Antennas and Propagation Society International Symposium[C].1994.
    [15] Dehong L, Gang K, Ling L, et al. Electromagnetic time-reversal imaging of a target in a cluttered environment[J]. Antennas and Propagation, IEEE Transactions on,2005,53(9):3058-3066.
    [16] Borcea L, Papanicolaou G, Tsogka C. Theory and applications of time reversal and interferometric imaging[J]. Inverse Problems,2003,(6):S139-S164.
    [17] Yavuz ME, Teixeira FL. Frequency dispersion compensation in time reversal techniques for UWB electromagnetic waves[J]. Geoscience and Remote Sensing Letters, IEEE,2005,2(2):233-237.
    [18] Bjrklund N, Johnsson T. Real-time sampling of Ground Penetrating Radar and Related Processing\[D\]. Lule, Sweden: Department of Computer Science and Electrical Engineering, Lule University of Technology,2005.
    [19] Groenenboom J, Yarovoy AG. Data processing for a land-mine-detection-dedicated GPR[A]. Eighth International Conference on Ground Penetrating Radar\[C\]. Gold Coast: 2000.
    [20] Chiang P-j, Tantum SL, Collins LM. Signal processing of ground-penetrating radar data for subsurface object detection[A]. Detection and Remediation Technologies for Mines and Minelike Targets VI, SPIE\[C\]. Orlando, FL, USA: 2001.
    [21] Carhoun DO. Adaptive clutter suppression for ground penetrating radar\[A\]. Detection and Remediation Technologies for Mines and Minelike Targets X, SPIE[C]. Orlando, FL, USA: 2005.
    [22] Carevic D. Clutter reduction and detection of minelike objects in ground penetrating radar data using wavelets[J]. Subsurface Sensing Technologies and Applications,2000,1(1):101-118.
    [23] Stockwell RG, Mansinha L, Lowe RP. Localization of the complex spectrum: the S transform[J]. Signal Processing, IEEE Transactions on,1996,44(4):998-1001.
    [24] Hui Z, Takashi T, Toshiyuki T. Three-dimensional reconstruction of a shallowly buried mine using time-domain data[J]. Microwave and Optical Technology Letters,2003,39(4):276-280.
    [25] Monorchio A, Bretones AR, Mittra R, et al. A hybrid time-domain technique that combines the finite element, finite difference and method of moment techniques to solve complex electromagnetic problems[J]. Antennas and Propagation, IEEE Transactions on,2004,52(10):2666-2674.
    [26] Anyong Q, Ching Kwang L, Lang J. Electromagnetic inverse scattering of two-dimensional perfectly conducting objects by real-coded genetic algorithm[J]. Geoscience and Remote Sensing, IEEE Transactions on,2001,39(3):665-676.
    [27] Franceschini G, Franceschini D, Massa A. Full-vectorial three-dimensional microwave imaging through the iterative multiscaling strategy-a preliminary assessment[J]. Geoscience and Remote Sensing Letters, IEEE,2005,2(4):428-432.
    [28] Zhang A, Jiang Y, Wang W, et al. Experimental studies on GPR velocity estimation and imaging method using migration in frequency-wavenumber domain\[A\]. 5th International Symposium on Antennas, Propagation and EM Theory\[C\]. Beijing: 2000.
    [29] Cui TJ, Qin Y, Wang G-L, et al. Low-frequency detection of two-dimensional buried objects using high-order extended Born approximations[J]. Inverse Problems,2004,(6):S41-S62.
    [30] Wentai L, Yi S, Chun Lin H. A TAM-BP imaging algorithm in GPR application\[A\]. 4th International Conference on Microwave and Millimeter Wave Technology\[C\], 2004.
    [31] Fang G. New design of the antipodal Vivaldi antenna for a GPR system[J]. Microwave and Optical Technology Letters,2005,44(2):136-139.
    [32] Hui Z, Sato M, Hongjun L. Migration velocity analysis and prestack migration of common-transmitter GPR data[J]. Geoscience and Remote Sensing, IEEE Transactions on,2005,43(1):86-91.
    [33] Bruschini C, Bruyn KD, Sahli H, et al. Study on the state of the art in the EU related to humanitarian demining technology, products and practice\[EB/OL\]. http://www.eudem.vub.ac.be/publications/Files/eudemfinal.pdf,1999.
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-05-25
  • 刊出日期:  2006-09-09

目录

    /

    返回文章
    返回