• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

飞机气体系统泄漏超声信号的处理方法

李俊杰, 王宏伟, 王俊生

李俊杰, 王宏伟, 王俊生. 飞机气体系统泄漏超声信号的处理方法[J]. 无损检测, 2010, 32(11): 861-864.
引用本文: 李俊杰, 王宏伟, 王俊生. 飞机气体系统泄漏超声信号的处理方法[J]. 无损检测, 2010, 32(11): 861-864.
LI Jun-Jie, WANG Hong-Wei, WANG Jun-Sheng. Research on Ultrasonic Leakage detection of Military Aircraft Gas System[J]. Nondestructive Testing, 2010, 32(11): 861-864.
Citation: LI Jun-Jie, WANG Hong-Wei, WANG Jun-Sheng. Research on Ultrasonic Leakage detection of Military Aircraft Gas System[J]. Nondestructive Testing, 2010, 32(11): 861-864.

飞机气体系统泄漏超声信号的处理方法

详细信息
    作者简介:

    李俊杰(1985-), 硕士研究生, 研究方向为航空装备状态监控与故障诊断。

  • 中图分类号: V233.3; V245.3

Research on Ultrasonic Leakage detection of Military Aircraft Gas System

  • 摘要: 利用FIR带通数字滤波器、混沌系统和AR模型功率谱估计相结合的方法, 实现在有较大噪声背景的机场环境下对飞机气体系统泄漏超声信号的提取。给出了基于该理论的具体算法及设计思路, 进行了基于Matlab/simulink的仿真。经验证, 该方法能够实现飞机气体管路的微小泄漏的检测, 大大减少了背景噪声的影响, 为飞机气体系统泄漏检测提供了新的思路。
    Abstract: The method of bandpass digital filter, chaos theory and AR model spectrum estimation was used to test the ultrasonic signal of airplane gas system leakage from strong background noise on airport. The design and method based on the theory were given and simulated by Matlab/simulink. It was verified that the method can detect the tiny leakage of aircraft gas system and reduce the influence of noise. It is a new leakage detection of aircraft gas system.
  • [1] 马大猷.现代声学理论基础[M].北京: 科学出版社, 2004: 296-306.
    [2] 江洋, 龚其春, 叶骞, 等.气体泄漏量超声检测理论分析与实验[J].上海交通大学学报, 2006, 40(2): 224-226.
    [3] 王秀, 程建政, 倪园.高速超声信号采集系统的设[J].无损检测, 2009, 31(2): 144-146.
    [4] 李伟, 郭福平.气体管道泄漏声源产生机理仿真研究[J].压力容器, 2008, 25(4): 12-15.
    [5] Moon C, Brown W C, Mellen S, et al. Ultarsound techniques for leak detection in vehicle and pressure vessel production lines[C]. Noise-Con, Dearborn Michigan: 2008.
    [6] Moon C, Brown W C, Mellen S, et al. Pickering ultrasound techniques for leak detection[C]. SAE N & V Conference. USA: SAE 2009-01-2159: 2009.
    [7] 聂春燕, 徐振忠.混沌系统在弱信号检测中的应用[J].传感器技术, 2003, 22(1): 55-57.
    [8] Chunyan Nie, Yao wu Shi , Wensuo Yi. Analysis of chaotic system characters based on time frequency distribution[C]. Intelligent Control and Automation, Dalian, 2006: 4842-4845.
    [9] 姜礼平.有噪声场合自回归模型的参数估计及定价[J].应用数学, 2001, 14(2): 64-68.
    [10] Bos R, Waele S de, Broersen P M T. AR spectral estimation by application of the burg algorithm to Irregularly sampled data[C]. IEEE Instrumention and Measurement Technology Conference May 21-23, 2001.
计量
  • 文章访问数:  1
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-12-23
  • 刊出日期:  2010-11-09

目录

    /

    返回文章
    返回