• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

钢板对接焊缝漏磁检测可视化方法

崔巍, 戴光, 龙飞飞, 王学增

崔巍, 戴光, 龙飞飞, 王学增. 钢板对接焊缝漏磁检测可视化方法[J]. 无损检测, 2013, 35(5): 8-11.
引用本文: 崔巍, 戴光, 龙飞飞, 王学增. 钢板对接焊缝漏磁检测可视化方法[J]. 无损检测, 2013, 35(5): 8-11.
CUI Wei, DAI Guang, LONG Fei-Fei, WANG Xue-Zeng. Visualization Method for the Steel Plate Butt Weld Based on Magnetic Flux Leakage Testing[J]. Nondestructive Testing, 2013, 35(5): 8-11.
Citation: CUI Wei, DAI Guang, LONG Fei-Fei, WANG Xue-Zeng. Visualization Method for the Steel Plate Butt Weld Based on Magnetic Flux Leakage Testing[J]. Nondestructive Testing, 2013, 35(5): 8-11.

钢板对接焊缝漏磁检测可视化方法

基金项目: 

黑龙江省教育厅科学技术研究重点资助项目(2511008)

黑龙江省研究生创新科研资助项目(YJSCX2012-048HLJ)

详细信息
    作者简介:

    崔巍(1984-),女,博士研究生,主要从事焊缝漏磁检测的研究工作。

  • 中图分类号: TG115.28

Visualization Method for the Steel Plate Butt Weld Based on Magnetic Flux Leakage Testing

  • 摘要: 以钢板对接焊缝漏磁检测数据为基础,提出了一种基于伪彩色的焊缝漏磁检测的可视化方法。该方法首先利用新型漏磁检测系统(磁化方向与行进方向垂直)采集焊缝3种状态(焊缝无缺陷、焊道上分布矩形槽缺陷、热影响区分布矩形槽缺陷)的漏磁场信号,生成三维空间分布图;然后通过灰度级线性变换,将其转换为二维灰度图形;最后将生成的灰度图像经过灰度级-彩色变换方法转换成伪彩色图像。试验结果表明通过伪彩色图像可直观地显示焊缝缺陷特征信息;该方法丰富了漏磁图像的细节信息和层次感,增强了对缺陷特征的识别能力,具有较好的视觉效果。
    Abstract: Based on the magnetic flux leakage(MFL) data of the butt weld of the steel plate, a MFL visualization method of the weld based on pseudo-color is proposed. Firstly, three kinds(weld with no-defect, rectangular slot defects in the heat affected zone, rectangular slot defects in the weld) of MFL signals are collected by the new MFL system(magnetization direction is perpendicular to marching direction), then three-dimensional spatial distribution are generated. And by the gradation linear transformation, it is converted to the two-dimensional grayscale graphics. Afterwards, by the gradation-color conversion method, the generated grayscale image is converted into the pseudo-color image. The test results indicate that the weld defect feature information can be displayed intuitively by the pseudo-color image; the method can enrich details and layering of the MFL image, and enhance the identification ability to the defect feature, with better visual effects.
  • [1] GROSLIER D, PELLERIN S, VALENSI F. Explorative approach of the spectral analysis tools to the detection of welding defects in lap welding[J]. Nondestructive Testing and Evaluation,2011,26(3):13-18.
    [2] MIRAPEIX J, GARCl′A-ALLENDE P B, COBO A, et al. Real-time arc-welding defect detection and classification with principal component analysis and artificial neural networks[J]. NDT&E International,2007,40(2):315-323.
    [3] KAFIEH R, LOTFI T, RASSOUL A. Automatic detection of defects on polyethylene pipe welding using thermal infrared imaging[J]. Infrared Physics & Technology,2011,54:317-325.
    [4] YAHIA N B, BELHADJ T, BRAG S. Automatic detection of welding defects using radiography with a neural approach[J]. Procedia Engineering,2011,10:671-679.
    [5] 冯兴奎.过程设备焊接[M].北京:化学工业出版社,2003:60-62.
    [6] 崔巍,戴光,陈志华,等.基于三维数值模拟的焊缝缺陷漏磁场分析[J].无损检测,2012,34(8):10-16.
    [7] 金明星,张长江.台风云图伪彩色增强的Berkeley小波变换法[J].计算机应用,2010,30(6):1602-1605.
    [8] 蓝春生,蓝鹏,曹煜媛.医学图像的伪彩色处理[J].中国体视学与图像分析,2002,7(3):166-168.
    [9] 王智文,刘美珍,蔡启先,等.基于小波分析和伪彩色的遥感图像增强[J].计算机工程与设计,2008,29(18):4771-4773.
    [10] 罗军辉,冯平,哈力旦·A,等.MATLAB7.0在图像处理中的应用[M].北京:机械工业出版社,2005:151-152.
计量
  • 文章访问数:  4
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-17
  • 刊出日期:  2013-05-09

目录

    /

    返回文章
    返回