• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

基于模糊聚类双谱的磁瓦内部缺陷无损检测方法

黄沁元, 殷鹰, 赵越, 赵秀粉, 殷国富

黄沁元, 殷鹰, 赵越, 赵秀粉, 殷国富. 基于模糊聚类双谱的磁瓦内部缺陷无损检测方法[J]. 无损检测, 2014, 36(12): 15-19.
引用本文: 黄沁元, 殷鹰, 赵越, 赵秀粉, 殷国富. 基于模糊聚类双谱的磁瓦内部缺陷无损检测方法[J]. 无损检测, 2014, 36(12): 15-19.
HUANG Qin-yuan, YIN Ying, ZHAO Yue, ZHAO Xiu-fen, YIN Guo-fu. Non-Destructive Testing of Internal Defect in Magnetic Tile Based on Fuzzy Clustering Bispectrum[J]. Nondestructive Testing, 2014, 36(12): 15-19.
Citation: HUANG Qin-yuan, YIN Ying, ZHAO Yue, ZHAO Xiu-fen, YIN Guo-fu. Non-Destructive Testing of Internal Defect in Magnetic Tile Based on Fuzzy Clustering Bispectrum[J]. Nondestructive Testing, 2014, 36(12): 15-19.

基于模糊聚类双谱的磁瓦内部缺陷无损检测方法

基金项目: 

国家自然科学青年基金资助项目(51205265), 四川省科技支撑计划资助项目(2011GZ0280)

详细信息
    作者简介:

    黄沁元(1984-), 男, 博士研究生, 研究方向为无损检测。

  • 中图分类号: TG115.28

Non-Destructive Testing of Internal Defect in Magnetic Tile Based on Fuzzy Clustering Bispectrum

  • 摘要: 为解决磁瓦内部缺陷较难检测的问题, 提出一种模糊聚类双谱分析方法用于其内部缺陷的无损检测。该方法以磁瓦在受到撞击时产生的声振信号作为研究对象, 利用双谱分析发现内部缺陷与双谱峰值的分布区域具有映射关系, 并且模糊聚类处理后的归一化双谱能明显地反映这一特征。根据这个规律, 通过将模糊聚类双谱的对角线切片划分为若干频段, 并计算切片指定幅值所在的频段建立内部缺陷识别规则。最后由验证试验评估该方法的可行性, 得到了92.5%以上的识别精度。试验表明:模糊聚类双谱在磁瓦内部缺陷声振检测中具有一定实用性。
    Abstract: In order to solve the issue of internal defect detection of magnetic tile using manual work, an analysis of fuzzy clustering bispectrum was presented for non-destructive testing of internal defect. The proposed method was based on the acoustic signal created by impacting magnetic tile. Bispectrum analysis revealed a mapping relationship between internal defect and peak distribution. Normalized bispectrum processed by a fuzzy clustering algorithm can obviously illustrate this characteristic. According to the feature, the diagonal slice of fuzzy clustering bispectrum was divided into several frequency ranges. Then identification rule was established by calculating the frequency range which contained specific amplitude of the slice. At last, the effectiveness of this method was assessed by a verification experiment and the result showed that the recognition accuracy of more than 92.5% was achieved. It was demonstrated that fuzzy clustering bispectrum can be applied to acoustic inspection for internal defect of magnetic tile.
  • [1] JIANG Z D, LUK B L, LIU K P.Bispectra-based impact acoustic non-destructive evaluation[J]. NDT and EInternational, 2009, 42(7):652-657.
    [2] XIANG Y, TSO S K.Detection and classification of flaws in concrete structure using bispectra and neural networks[J]. NDT and E International, 2002, 35(1):19-27.
    [3] Zhou Y, Chen J, Dong G M, et al.Application of the horizontal slice of cyclic bispectrum in rolling element bearings diagnosis[J]. Mechanical Systems and Signal Processing, 2012, 26(1):229-243.
    [4] LIU W Y, HAN J G.A fuzzy clustering-based binary threshold bispectrum estimation approach[J]. Neural Computing and Applications, 2012, 21(1):385-392.
    [5] 李学军, 蒋玲莉, 杨大炼, 等.基于双谱分布区域的齿轮聚类分析与故障诊断[J].振动工程学报, 2011,24(3): 304-308.
    [6] 林 勇, 周晓军, 张文斌, 等.基于形态小波理论和双谱分析的滚动轴承故障诊断[J].浙江大学学报:工学版, 2010, 44(3):432-439.
    [7] OROSCO EUGENIO C, LOPEZ NATALIA M, DI SCIASCIO FERNANDO.Bispectrum-based features classification for myoelectric control[J]. Biomedical Signal Processing and Control, 2013, 8(2):153-168.
计量
  • 文章访问数:  2
  • HTML全文浏览量:  0
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-24

目录

    /

    返回文章
    返回