• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

一种基于时空MRF的工业CT图像序列分割方法

程云勇, 张定华, 金炎芳, 张顺利

程云勇, 张定华, 金炎芳, 张顺利. 一种基于时空MRF的工业CT图像序列分割方法[J]. 无损检测, 2009, 31(10): 786-789.
引用本文: 程云勇, 张定华, 金炎芳, 张顺利. 一种基于时空MRF的工业CT图像序列分割方法[J]. 无损检测, 2009, 31(10): 786-789.
CHENG Yun-Yong, ZHANG Ding-Hua, JIN Yan-Fang, ZHANG Shun-Li. ICT Image Sequence Segmentation Based on the Spatial Temporal Markov Random Field Models[J]. Nondestructive Testing, 2009, 31(10): 786-789.
Citation: CHENG Yun-Yong, ZHANG Ding-Hua, JIN Yan-Fang, ZHANG Shun-Li. ICT Image Sequence Segmentation Based on the Spatial Temporal Markov Random Field Models[J]. Nondestructive Testing, 2009, 31(10): 786-789.

一种基于时空MRF的工业CT图像序列分割方法

基金项目: 

中国博士后基金资助项目(20080441190)

详细信息
    作者简介:

    程云勇(1976-), 男, 博士后, 主要研究方向为CAD/CAM、图像处理和产品数字化测量。

  • 中图分类号: TG115.28

ICT Image Sequence Segmentation Based on the Spatial Temporal Markov Random Field Models

  • 摘要: 提出了一种基于时空马尔科夫随机场的工业CT图像序列分割算法。此算法根据工业CT图像序列信息连续性的特点, 建立时空Markov随机场, 并且构造相应的混合高斯统计模型能量函数, 利用条件迭代算法(ICM)实现最大后验概率(MAP)估计。仿真试验表明, 该方法能够较好地实现工业CT图像序列的分割。
    Abstract: A method of ICT image sequence segmentation based on Spatial Temporal Markov field model was presented. According to the spatial correlation of the ICT image sequence, the Markov random field(MRF) model based on spatial-temporal neighborhood system was proposed and the cost function of corresponding Gaussian mixture model was constructed. Then the maximum a posteriori(MAP) estimation was fulfilled by using the iterated conditional model(ICM) algorithms. The experimental results show that the proposed method is suitable, accurate and effective for ICT image sequence segmentation.
  • [1] Tu Shu-Ju, Shaw Chris C, Chen Lingyun. Noise simulation in cone beam CT imaging with parallel computing[J]. Phys Med Biol,2006,51(5):1283-1297.
    [2] 冈萨雷斯.数字图像处理(第二版)[M].北京: 电子工业出版社,2004:461-515.
    [3] Lashkia V. Defect detection in X-ray images using fuzzy reasoning[J]. Image and Vision Computing,2001,19:261-269.
    [4] Marroquin J L. Probabilistic solution of inverse problem[R]. Cambridge: A. I. Lab. Technical Report No. 860, MIT.
    [5] Zoltan Kato, Ting-Chuen Pong. A Markov random field image segmentation model for color textured images[J]. Image and Vision Computing,2006,(24):1103-1114.
    [6] Lu Qing, Jiang Tianzi. Pixon-based image denoising with Markov random Fields[J]. Pattern Recognition,2001,(34):2029-2039.
    [7] Li Chunming, Huang Rui, Ding Zhaohua. A Variational Level Set Approach to Segmentation and Bias Correction of Images with Intensity Inhomogeneity[J]. MICCAI, Part II, LNCS,2008,52(42):1083-1091.
计量
  • 文章访问数:  2
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-03-08
  • 刊出日期:  2009-10-09

目录

    /

    返回文章
    返回