Method of Defect Recognition of Magnetic Flux Leakage Inner Detection for Pipeline
-
摘要: 针对管道漏磁内检测的缺陷识别问题,提出了一种基于阈值分析的方法对漏磁检测数据进行处理,生成一系列可视化的漏磁检测曲线,便于图像的识别。利用Delphi编程软件,在识别环形焊缝时,产生一条竖直的线来定位环形焊缝;在识别螺旋焊缝时,以圆点的形式产生斜线来定位螺旋焊缝,实现了焊缝的自动识别功能;在识别缺陷时,以三角形标记出缺陷的位置。对不同的漏磁检测数据进行了多次的识别,表明此方法对焊缝及缺陷识别率较高。Abstract: For the problem of defect recognition of magnetic flux leakage pipeline, a method based on threshold analysis is introduced to process MFL defect data. To facilitate image recognition, a series of visual magnetic flux leakage curve is generated. By the use of Delphi programming software, one vertical line can be drawn to locate the girth weld automatically in girth weld recognition and one slash in the form of dots can be drawn to locate the spiral weld in spiral weld recognition which makes the function of automatic weld recognition basically. Also triangle can be used to mark the position of defect. By much identification of different MFL defect, the discrimination of this method in weld and defect recognition is relatively high.
-
-
[1] 王富祥,冯庆善,张海亮,等.基于三轴漏磁内检测技术的管道特征识别[J].无损检测,2011,33(1):79-84. [2] 杨理践,余文来,高松巍,等.管道漏磁检测缺陷识别技术[J].沈阳工业大学学报,2010,32(1):65-69. [3] RAMUHALLI P, UDPA L, UDPA S. Neural network-based inversion algorithms in magnetic flux leakage nondestructive evaluation[J]. Applied Physics,2003,93(10):8274-8276. [4] 刘秀清,高松巍,杨理践.ANSYS在管道漏磁法检测中的研究与应用[J].沈阳工业大学学报,2001,23(1):28-31. [5] HAUEISEN J, UNGER R, BEUKER T, et al. Evaluation of inverse algorithms in analysis of magnetic flux leakage data[J]. IEEE Transactions on Magnetics,2002,3(38):1481-1488. [6] 杨理践,王玉梅,冯海英.智能化管道漏磁检测装置的研究[J].无损检测,2002,24(3):100-102. [7] 魏茂安,靳世久,李莺莺,等.油气管道缺陷二维轮廓重建及处理技术[J].石油学报,2003,24(6):98-106. [8] 杨理践,张双楠,高松巍.管道漏磁检测数据压缩技术[J].沈阳工业大学学报,2010,32(4):395-399. [9] 曹丽娜,李建,陈世利,等.管道漏磁检测数据图形化显示的研究[J].电子测量技术,2007,30(2):162-164. [10] 杨海英,戴光,李伟,等.管道漏磁检测信号的支持向量机识别方法[J].科学技术与工程,2010,10(27):1671-1815.
计量
- 文章访问数: 6
- HTML全文浏览量: 0
- PDF下载量: 1