Branch pipe fillet weld surface defect detection system based on alternating current field
-
摘要:
基于交流电磁场检测(ACFM)技术,开发了一套支管角焊缝表面缺陷检测系统。设计了包含ACFM探头和便携式机箱的硬件检测系统,针对检测信号的特点开发了信号平滑滤波算法,提高了信号的信噪比,并基于LabVIEW平台编写了集信号采集、信号处理和信号显示为一体的检测软件,最后形成一套完整的交流电磁场支管角焊缝表面缺陷检测系统,并采用该系统对Q345材料角焊缝试件进行检测。试验结果表明,所设计的交流电磁场缺陷检测系统能实现支管角焊缝表面缺陷信号的有效降噪和准确识别。
Abstract:A surface defect detection system for branch pipe fillet welds was developed based on alternating current field detection (ACFM) technology. A hardware detection system including ACFM probe and portable chassis was designed, and a signal smoothing filtering algorithm was developed based on the characteristics of the detection signal to improve the signal-to-noise ratio. Based on LabVIEW software, a detection software was developed to integrate signal acquisition, signal processing, and signal display. Finally, a complete AC electromagnetic field branch corner weld surface defect detection system was formed, and the Q345 material corner weld specimen was tested using this equipment. The experimental results showed that the proposed alternating current field defect detection system can effectively reduce noise and accurately identify surface defect signals of branch pipe corner welds.
-
-
[1] 周敏惠,於美甫.焊接缺陷与对策[M].上海:上海科学技术文献出社,1989. [2] 郭小红,王春礼,张国伟.某超临界锅炉水冷壁上集箱管接头裂纹分析[J].锅炉制造,2012(5):47-49. [3] 姜磊,罗维祺,黄浩,等.超临界锅炉四大管道管座角焊缝裂纹分析及预防[J].特种设备安全技术,2017(4):7-9. [4] 宋晓峰,朱爱希,张迪,等.钢结构H型钢焊缝超声相控阵自动检测系统的设计及应用[J].焊接技术,2021,50(3):70-73. [5] CHEN Y,MA H W,DONG M.Automatic classification of welding defects from ultrasonic signals using an SVM-based RBF neural network approach[J].Insight-Non-destructive Testing and Condition Monitoring,2018,60(4):194-199. [6] 陈涛,肖小齐,张赛,等.一种用于焊缝缺陷检测的旋转涡流探头设计[J].传感技术学报,2020,33(7):945-949. [7] DMITRIEV S F,KATASONOV A O,MALIKOV V N,et al.Eddy-current measuring system for analysis of alloy defects and weld seams[J].Russian Engineering Research,2016,36(8):626-629. [8] BOARETTO N,CENTENO T M.Automated detection of welding defects in pipelines from radiographic images DWDI[J].NDT & E International,2017,86:7-13. [9] 郝斌.在用压力容器、压力管道焊缝射线检测技术的优化[J].焊接技术,2016,45(8):90-92. [10] LI W,YUAN X A,CHEN G M,et al.A feed-through ACFM probe with sensor array for pipe string cracks inspection[J].NDT & E International,2014,67:17-23. [11] 葛运春,张翼,冷建成,等.海洋平台钻机底座焊缝的交流电磁场检测[J].无损检测,2015,37(7):77-80,88. [12] PAPAELIAS M P,LUGG M C,ROBERTS C,et al.High-speed inspection of rails using ACFM techniques[J].NDT & E International,2009,42(4):328-335. [13] 李伟基于交流电磁场的缺陷智能可视化检测技术研究 东营中国石油大学2007李伟.基于交流电磁场的缺陷智能可视化检测技术研究[D].东营:中国石油大学,2007. [14] 康中尉,罗飞路,陈棣湘.交变磁场测量的缺陷识别模型[J].无损检测,2005,27(3):123-126,163. [15] 李文艳,李伟,陈国明.交变磁场测量系统的设计及其微弱信号的检测方法[J].无损检测,2010,32(12):977-980. [16] 王仁荣,赵力伟,郑劲豹,等.基于LABVIEW的焊缝表面缺陷智能检测系统研究[J].焊接技术,2018,47(11):54-57.