Analysis on influence of electromagnetic detection direction on mechanical property prediction of steel strip
-
摘要:
多电磁方法的无损检测技术应用于铁磁性材料力学性能检测中时,因铁磁性材料受各种因素的影响往往呈现出磁各向异性的特征,检测时试件需保持在某一固定方向,故检测方向的选择成为一个值得研究的问题。综合切向磁场谐波分析、巴克豪森噪声检测、增量磁导率检测和多频涡流检测等方法,为探究不同检测方向对力学性能测试的影响,搭建了周向多方法的电磁无损检测测量系统,以冷轧超高强钢作为试验对象,采集电磁参数后建立BP神经网络预测模型,并运用K折交叉验证来评估检测方向对预测精度的影响。试验发现超高强钢周向电磁特征分布是不均匀的,呈现出磁各向异性的特征,沿试件宽度方向检测精度优于轧制方向的。
Abstract:In the application of multi-electromagnetic nondestructive testing technology in the testing of mechanical properties of ferromagnetic materials, due to ferromagnetic materials often show the characteristics of magnetic anisotropy under the influence of various factors, the test sample needs to keep a fixed direction during testing, the selection of detection direction becomes a problem worth studying. Based on tangential magnetic field harmonic analysis, Barkhausen noise detection, incremental permeability detection, multi-frequency eddy current detection and other methods, a circumferential multi-method electromagnetic non-destructive testing measurement system was built to explore the influence of different detection directions on mechanical property testing. A BP neural network prediction model was established after collecting electromagnetic parameters of cold-rolled ultra-high strength steel as an experimental object. K-fold cross-validation was used to evaluate the influence of detection direction on prediction accuracy. It was found experimentally that the distribution of circumferential electromagnetic characteristics of ultrahigh strength steel was not uniform, showing the characteristics of magnetic anisotropy, and the detection accuracy along the width direction of the experimental sample was better than that in the rolling direction.
-
-
Table 1 切向磁场谐波分析的电磁特征参数
特征 单位 解释 P3,P5,P7 rad 3,5,7次谐波的相位大小 A3,A5,A7 A/m 3,5,7次谐波的幅值大小 K % 变形系数 UHS A/m 3,5,7次谐波幅值和 HRO A/m 磁滞回线零点处的谐波幅值 HCO A/m 矫顽力大小 Vmag V 传感器线圈的稳态电压 Table 2 巴克豪森噪声检测特征参数
特征 单位 解释 MMAX V 最大幅值 MMEAN V 一个激励周期内幅值的均值 HCM A/m M=MMAX矫顽磁场的场强 MR V 剩磁点幅值大小 DH25M A/m 25%MMAX巴克豪森蝶形图宽度 DH50M A/m 50%MMAX巴克豪森蝶形图宽度 DH75M A/m 75%MMAX巴克豪森蝶形图宽度 Table 3 增量磁导率检测特征参数
特征 单位 解释 UMAX V 最大幅值 UMEAN V 一个激励周期内幅值的均值 HCU A/m M=MMAX矫顽磁场的场强 UR V 剩磁点幅值 DH25U A/m 25%MMAX磁导率蝶形图宽度 DH50U A/m 50%MMAX磁导率蝶形图宽度 DH75U A/m 75%MMAX磁导率蝶形图宽度 Table 4 多频涡流检测特征参数
特征 单位 解释 Im1~Im4 V 不同频率下线圈阻抗的虚部 Re1~Re4 V 不同频率下线圈阻抗的实部 Ph1~Ph4 V 不同频率下线圈阻抗的相位 Mag1~Mag4 rad 不同频率下线圈阻抗的幅值 Table 5 超高强钢试件材料信息
序号 材料号 屈服强度/MPa 抗拉强度/MPa 1 23358833300 697 1 048 2 23358833500 611 1 059 3 23358833700 706 1 070 4 23358834600 607 1 056 ... 30 23358835100 648 1 106 -
[1] DOBMANN G ,ALTPETER I ,KOPP M.Nondestructive materials characterization of irradiated nuclear pressure-vessel steel samples by the use of micromagnetic techniques and in terms of mechanical properties[J].Russian Journal of Nondestructive Testing,2006,42(4):272-277. [2] WOLTER B ,GABI Y ,CONRAD C.Nondestructive testing with 3MA—an overview of principles and applications[J].Applied Sciences,2019,9(6):1068. [3] 丁松基于巴克豪森效应的铁磁性材料表面应力/硬度无损检测技术研究南京南京航空航天大学2018丁松.基于巴克豪森效应的铁磁性材料表面应力/硬度无损检测技术研究[D].南京:南京航空航天大学,2018. [4] LI K Y ,LI L ,WANG P ,et al.A fast and non-destructive method to evaluate yield strength of cold-rolled steel via incremental permeability[J].Journal of Magnetism and Magnetic Materials,2020,498:166087. [5] 李开宇,高雯娟,王平,等.基于脉冲涡流的铁磁性材料屈服强度检测方法[J].中国机械工程,2019,30(18):2143-2149. [6] JILES D C.Hysteresis models:non-linear magnetism on length scales from the atomistic to the macroscopic[J].Journal of Magnetism and Magnetic Materials,2002,242/243/244/245:116-124. [7] ATKINSON D ,ALLWOOD D A ,XIONG G ,et al.Magnetic domain-wall dynamics in a submicrometre ferromagnetic structure[J].Nature Materials,2003,2:85-87. [8] 何存富,蔡燕超,刘秀成,等.基于磁巴克豪森噪声的S136钢表面硬度定量预测模型对比[J].机械工程学报,2019,55(18):15-21. [9] 赵垒基于多磁参数的力学性能检测模型研究南京南京航空航天大学2022赵垒.基于多磁参数的力学性能检测模型研究[D].南京:南京航空航天大学,2022. [10] 康学良,董世运,汪宏斌,等.基于磁巴克豪森原理的铁磁材料各向异性检测技术综述[J].材料导报,2019,33(1):183-190.