Experiment on the correlation between flexural load capacity of reactive powder concrete cover and NDT parameters
-
摘要:
为了有效预测实际工程中活性粉末混凝土(RPC)盖板开裂强度与破坏强度,收集了27块实际工程中使用的RPC盖板,测试其表面硬度、表面回弹值、超声波波速、剪压值、名义开裂强度、名义破坏强度。线性拟合了不同检测参数与名义破坏强度、名义开裂强度之间的关系。结果表明:砂浆型回弹仪测得的RPC盖板表面回弹值与名义破坏强度线性相关性较强,相关系数为0.82。实际工程中推荐使用砂浆型回弹仪测试RPC盖板表面回弹值,预测其抗弯承载力。
Abstract:In order to effectively predict the cracking strength and breaking strength of reactive powder concrete (RPC) covers in real projects. Twenty-seven RPC covers used in actual projects were collected and tested for surface hardness, surface rebound value, ultrasonic wave velocity, shear pressure value, nominal cracking strength, and nominal breaking strength. The relationships between different testing parameters and nominal breaking strength and nominal cracking strength were linearly fitted. The results showed that the linear correlation between the surface rebound value of RPC cover and the nominal cracking strength measured by mortar-type rebound tester was stronger, with a correlation coefficient of 0.82. It was recommended to use the mortar-type rebound tester to test the surface rebound value of RPC cover to predict its bending capacity in the actual project.
-
-
Table 1 RPC材料性能要求
项目 抗压强度/MPa 弯曲强度/MPa 弹性模量/GPa 氯离子渗入 防冻 参数 ≥130 ≥18 ≥48 <40 >F500 Table 2 活性粉末混凝土盖板抗弯承载力与无损检测参数的试验结果
序号 强度/MPa 表面硬度 回弹值 超声波速/(km·s-1) 剪压值/kN 名义开裂强度 名义破坏强度 ZC-3型 ZC-4型 ZC-5型 1# 9.76 14.21 539.3 25.1 34.4 47.9 4.700 42.27 2# 8.03 15.20 541.7 27.4 34.4 42.7 4.800 43.84 3# 8.39 13.93 551.3 23.4 33.3 37.7 4.630 39.50 4# 8.00 12.00 551.0 26.4 35.6 42.4 4.710 37.28 5# 9.33 12.72 563.0 22.4 35.9 41.6 4.870 38.10 6# 8.50 13.53 557.7 25.5 35.0 43.5 4.800 37.21 7# 10.90 14.69 536.0 27.6 36.5 42.2 4.970 37.81 8# 10.51 14.64 552.7 24.4 37.4 46.7 5.120 43.91 9# 10.00 13.61 542.3 27.6 35.6 45.1 4.773 41.49 10# 6.66 11.93 538.3 25.5 36.0 41.2 4.653 40.96 11# 7.69 11.48 530.7 27.0 35.3 39.4 4.710 43.10 12# 7.43 12.43 536.0 25.6 34.8 40.0 4.793 42.92 13# 9.76 12.58 501.0 33.9 36.6 43.0 4.660 42.32 14# 10.81 13.07 540.0 24.6 33.7 44.4 4.630 44.35 15# 10.47 14.39 545.0 30.5 38.1 42.1 4.710 43.82 16# 9.10 9.10 516.7 25.6 28.9 33.9 4.410 29.79 17# 9.42 9.42 500.0 26.0 29.7 35.1 4.470 35.38 18# 8.88 8.88 515.0 24.3 30.8 34.8 4.187 37.56 19# 10.03 10.03 497.3 23.0 28.7 34.2 4.427 30.39 20# 8.55 8.55 515.0 25.1 30.2 34.4 4.237 32.14 21# 9.21 9.21 514.0 26.5 30.8 35.0 4.357 29.08 22# 7.47 9.17 514.0 22.1 31.2 35.0 4.213 31.58 23# 7.88 9.33 485.0 23.4 28.7 34.5 4.093 27.59 24# 6.65 7.66 505.3 23.8 26.0 32.8 4.257 26.48 25# 6.20 8.41 507.3 24.0 23.0 31.0 4.310 27.95 26# 5.61 8.26 506.3 24.2 23.5 29.6 4.190 29.02 27# 6.57 9.12 513.3 24.6 32.7 34.1 4.013 27.23 -
[1] 刘娟红,宋少民 .活性粉末混凝土——配制、性能与微结构[M].北京:化学工业出版社,2013. [2] 朱博,段锋,何娟,等 .陶砂替代石英砂制备活性粉末混凝土(RPC)的性能研究[J].材料导报,2022,36(10):69-73. [3] 李坤坤,杨克家,李坤梁,等 .纤维分布对活性粉末混凝土构件力学性能的影响[J].土木与环境工程学报,2022,44(5):197-204. [4] 杨立云,林长宇,张飞,等 .玄武岩纤维对活性粉末混凝土受压破坏的影响[J].建筑材料学报,2022,25(5):483-489. [5] 刘岩 .组合回弹法检测混凝土抗压强度研究[J].建筑结构,2023,53(10):91-96. [6] 周茗如,樊乐涛,彭新新,等 .兰州地区高强混凝土回弹法测强曲线试验研究[J].混凝土,2016(10):158-160. [7] 刘利先,赵岩枫,吕龙,等 .昆明地区回弹法检测混凝土抗压强度测强曲线的研究[J].建筑科学,2015,31(9):65-69. [8] 沈金生,焦轼伦,李扬,等 .高强混凝土超声回弹法地区测强曲线试验研究[J].混凝土,2020(4):145-147. [9] 李卫文,袁小玲,高波,等 .高温对玄武岩纤维RPC抗压强度损伤及超声探测[J].混凝土,2022(2):51-53,59. [10] WASHER G ,FUCHS P ,GRAYBEAL B A ,et al .Ultrasonic testing of reactive powder concrete[J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2004,51(2):193-201. [11] FANG Z ,ZHOU C B .Experimental study on the elastic modulus of reactive powder concrete[J].Journal of the China Railway Society,2018,40(9):128-134.