CT detection method for position information of core particles in dispersed fuel pellets
-
摘要:
在弥散燃料芯块中,核芯颗粒随机分布在其非金属材料处。采用表征核芯颗粒位置信息的方法评估产品工艺质量,具有重要意义。采用三维CT图像法,通过VG软件拟合芯块的外轮廓,以此来获得芯块的三维坐标,并将核芯颗粒视为夹杂,从而在获得每个核芯颗粒中心坐标的基础上,自动计算出其与相邻核芯颗粒的间距;然后采用微焦CT对弥散燃料芯块进行检测和处理,并采用统计热图方式,直观表征燃料芯块中核芯颗粒的分布均匀性;最后进行了实际燃料芯块相邻核芯颗粒间距的自动测量,验证了该方法的可行性,为进一步开展核芯颗粒分布状况的表征工作奠定了基础。
Abstract:In dispersed fuel pellets, core particles are randomly dispersed and distributed in non-metallic materials. The method of characterizing the position information of core particles is usually used to evaluate and evaluate the quality of product processes, which is of great significance. This paper adopted the three-dimensional CT image method and used VG software to fit the outer contour of the core block to obtain the three-dimensional coordinates of the core block. The core particles were treated as inclusions, and on the basis of obtaining the center coordinates of each core particle, the distance between adjacent core particles was automatically calculated. Then, microfocal CT was used to detect and process dispersed fuel pellets, and statistical heat map was used to visually characterize the distribution uniformity of core particles in the fuel pellets. Finally, the automatic measurement of the spacing between adjacent core particles was tested using actual fuel pellets, proving the feasibility of this method for measuring the spacing between core particles. This lays a technical foundation for further characterization of core particle distribution.
-
-
Table 1 核芯颗粒质心坐标值及相邻球体间距测量结果
球体编号 质心坐标值 最近球体编号 最近球体质心坐标 球心距/pixel 球心距/μm #1 (476, 193, 210) #4 (465, 170, 299) 92.58 1 008.2 #2 (565, 110, 259) #4 (465, 170, 299) 123.29 1 342.6 #3 (595, 248, 269) #5 (606, 210, 184) 93.75 1 021.0 #4 (465, 170, 299) #1 (476, 193, 210) 92.58 1 008.2 #5 (606, 210, 184) #3 (595, 248, 269) 93.75 1 021.0 Table 2 相同颗粒的显微CT测量结果和金相解剖结果对比
序号 CT 金相 偏差 序号 CT 金相 偏差 1 0.535 0.520 0.015 11 0.502 0.520 -0.018 2 0.502 0.517 -0.015 12 0.521 0.500 0.021 3 0.507 0.499 0.008 13 0.497 0.499 -0.002 4 0.515 0.509 0.006 14 0.502 0.509 -0.007 5 0.514 0.526 -0.012 15 0.508 0.496 0.012 6 0.527 0.525 0.002 16 0.512 0.527 -0.015 7 0.508 0.516 -0.008 17 0.509 0.508 0.001 8 0.513 0.503 0.010 18 0.500 0.513 -0.013 9 0.517 0.523 -0.006 19 0.513 0.517 -0.004 10 0.510 0.529 -0.019 20 0.503 0.510 -0.007 -
[1] 张浩,王建建 .模块式高温气冷堆的技术背景及展望[J].中国核电,2021, 14(3):419-422. [2] 张作义,吴宗鑫,王大中,等 .我国高温气冷堆发展战略研究[J].中国工程科学,2019, 21(1):12-19. [3] 张翔,潘小强,陆永洪,等 .耐事故燃料芯块的制备方法与研究进展[J].粉末冶金技术,2022, 40(4):334-339, 350. [4] 莫华均,张伟,吴璐,等 .耐事故UO2基复合燃料芯块的研发进展[J].核动力工程,2020, 41(2):36-39. [5] 杨红发,巫英伟,尹莎莎,等 .事故容错燃料安全性能初步分析[J].原子能科学技术,2020, 54(8):1441-1447. [6] 尹春雨,高士鑫,钱立波,等 .耐事故燃料用于高性能压水堆的分析研究[J].核动力工程,2023, 44(2):136-144. [7] 张小刚,卢艳平,谭辉,等 .X射线微焦CT测量燃料颗粒分布均匀性的表征方法[J].光学技术,2023, 49(2):215-219. [8] CARMIGNATO S .Industrial X-Ray Computed Tomography[M].Cham:Springer International Publishing,2018. [9] VILLARRAGA-GÓMEZ H ,HERAZO E L ,SMITH S T .X-ray computed tomography:from medical imaging to dimensional metrology[J].Precision Engineering,2019, 60:544-569. [10] HSIEH J ,FLOHR T .Computed tomography recent history and future perspectives[J].Journal of Medical Imaging,2021, 8(5):052109. [11] 殷亚军,涂志新,周建新,等 .基于概率密度函数的铸铁石墨颗粒分布研究[J].现代铸铁,2017, 37(6):80-84. [12] 郭慧,王刚,赵佳乐,等 .种子纵向分布均匀性指标及空间分布均匀性评价方法[J].吉林大学学报(工学版),2020, 50(3):1120-1130. [13] 吴胜兴,孙克纬,沈德建 .新拌混凝土骨料分布均匀性表征方法及其应用[J].河海大学学报(自然科学版),2022, 50(1):67-75.