• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

在役井口阀门内部阀杆腐蚀的相控阵超声检测

刘祥康, 汪传磊, 罗伟, 王都, 陈阳, 崔默涵, 伍剑波

刘祥康, 汪传磊, 罗伟, 王都, 陈阳, 崔默涵, 伍剑波. 在役井口阀门内部阀杆腐蚀的相控阵超声检测[J]. 无损检测, 2023, 45(12): 1-6,17. DOI: 10.11973/wsjc202312001
引用本文: 刘祥康, 汪传磊, 罗伟, 王都, 陈阳, 崔默涵, 伍剑波. 在役井口阀门内部阀杆腐蚀的相控阵超声检测[J]. 无损检测, 2023, 45(12): 1-6,17. DOI: 10.11973/wsjc202312001
LIU Xiangkang, WANG Chuanlei, LUO Wei, WANG Du, CHEN Yang, CUI Mohan, WU Jianbo. Phased array ultrasonic testing of corrosion on the internal valve stem of in-service wellhead valves[J]. Nondestructive Testing, 2023, 45(12): 1-6,17. DOI: 10.11973/wsjc202312001
Citation: LIU Xiangkang, WANG Chuanlei, LUO Wei, WANG Du, CHEN Yang, CUI Mohan, WU Jianbo. Phased array ultrasonic testing of corrosion on the internal valve stem of in-service wellhead valves[J]. Nondestructive Testing, 2023, 45(12): 1-6,17. DOI: 10.11973/wsjc202312001

在役井口阀门内部阀杆腐蚀的相控阵超声检测

基金项目: 

四川省科技支撑计划项目(2022YFG0044;2023YFQ0060)

详细信息
    作者简介:

    刘祥康(1975-),男,高级工程师,主要研究方向为油气井完整性及修井

    通讯作者:

    伍剑波, E-mail:wujianbo@scu.edu.cn

  • 中图分类号: TG115.28

Phased array ultrasonic testing of corrosion on the internal valve stem of in-service wellhead valves

  • 摘要: 为实现在役井口阀门内部阀杆腐蚀情况的检测与评价,针对井口阀杆难以拆卸,磁粉、涡流、超声等无损检测方法难以直接穿透阀体进入内部检测等关键问题,提出了一种端部激励的相控阵超声检测方法。首先使用COMSOL有限元分析软件建立仿真模型,研究了典型阀杆结构的声场分布规律并分析结构回波特征,然后制作缺陷深度为2~8 mm的阀杆试件,对刻有人工缺陷的阀杆试件进行检测,并装入阀门内部进行检测,完成对阀杆特征结构与缺陷的定位。仿真和试验结果表明,在阀杆端部进行相控阵超声激励可以有效地识别阀门内部深度为2 mm的缺陷,验证了在不拆卸阀门内部阀杆的情况下,对其进行相控阵超声检测的可行性。
    Abstract: To achieve the detection and evaluation of corrosion on the internal valve stem of in-service wellhead valves, a phased array ultrasonic testing method with end excitation was proposed to address key issues such as difficulty in disassembling and testing the wellhead valve stem, and difficulty in directly penetrating the valve body for internal testing using non-destructive testing methods such as magnetic powder, eddy current, and ultrasound. Firstly, a simulation model was established using COMSOL finite element analysis software. The sound field distribution pattern of typical valve stem structures was studied and the echo characteristics of the structure was analyzed. Then, valve stem specimens with defect depths of 2-8 mm were manufactured, the valve stem specimens with artificial defects were tested and installed inside the valve for testing, the positioning of the valve stem characteristic structure and defects was performed. The simulation and experimental results indicated that phased array ultrasonic excitation at the end of the valve stem can effectively identify defects with a depth of 2 mm inside the valve, verifying the feasibility of phased array ultrasonic testing without dismantling the valve stem.
  • [1] 朱祥军, 张祥来, 张志东.采油树阀门的超声相控阵检测[J].无损检测, 2017, 39(1):5-9.
    [2] 张宝, 王仕强, 彭建云, 等.在役高压井口装置检测技术应用[J].北京石油化工学院学报, 2018, 26(4):43-47.
    [3] 李雪野, 姜超.井口装置闸阀检测装置的研究[J].设备管理与维修, 2021(20):117-119.
    [4] 郭军, 宋亮, 梁存金, 等.采气树阀门腐蚀缺陷的检测探讨[J].中国石油和化工标准与质量, 2022, 42(6):43-45.
    [5] 沈君芳. 井口闸阀腐蚀失效及其结构件耐腐蚀性研究[J].全面腐蚀控制, 2022, 36(11):7-13.
    [6]

    PENG C Y, GRONDIN E, GAO X R, e al.Solid axle defect detection technique based on phased array ultrasonics[C]//201618th International Wheelset Congress (IWC).Chengdu, China:IEEE, 2017.

    [7] 彭朝勇, 蒋秋月, 高晓蓉, 等.实心车轴的超声相控阵探伤[J].微型机与应用, 2013, 32(1):83-86.
    [8] 张昊. 超声相控阵缺陷检测系统设计与应用[D].天津:天津大学, 2017.
    [9] 李刚. 超声相控阵检测扇形扫描成像研究[D].西安:西安科技大学, 2019.
    [10]

    MCNAB A, CAMPBELL M J.Ultrasonic phased arrays for nondestructive testing[J].NDT International, 1987, 20(6):333-337.

    [11] 马宏伟, 董明, 陈渊, 等.基于矩形换能器空间脉冲响应的相控阵声场研究[J].机械工程学报, 2014, 50(18):36-42.
    [12] 刘凯. 基于阵列A扫描信号的超声相控阵成像方法研究[D].太原:中北大学, 2015.
    [13] 董晗, 孔超, 师芳芳, 等.超声相控阵井壁成像检测的回波信号处理[J].无损检测, 2017, 39(5):65-69.
    [14] 梁思成, 吴永强.基于COMSOL的超声相控阵无损检测算法与仿真技术研究[J].内燃机与配件, 2018(13):111-115.
    [15] 王飞, 赵阳, 贺锡鹏, 等.密封瓦燕尾槽的超声相控阵检测[J].无损检测, 2019, 41(3):25-28, 79.
    [16] 敬博通, 聂鹏飞, 党凯强.基于COMSOL对超声相控阵特性对比分析[J].国外电子测量技术, 2021, 40(1):53-57.
    [17] 张雪琴. 基于ANSYS的超声相控阵探头的声场仿真研究[D].桂林:桂林理工大学, 2020.
计量
  • 文章访问数:  19
  • HTML全文浏览量:  9
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-13
  • 刊出日期:  2023-12-09

目录

    /

    返回文章
    返回