Thermal ageing detection of P92 steel based on the magnetic Barkhausen effect
-
摘要: 针对火电厂锅炉和主蒸汽管道P92钢服役时的热老化状态检测,开发了基于MBN(磁巴克豪森噪声)效应的热老化检测仪器;对不同硬度P92钢进行MBN信号测量,选择了基于启发式硬阈值原则的小波包算法作为滤波算法;得到了MBN信号4种特征值与P92钢硬度值之间的关系;以硬度作为评价热老化状态的参数,对不同服役时长的P92钢试样进行MBN信号检测。试验结果表明,当服役时间小于30 000 h时,材料的硬度有小幅度的增大,当服役时间为30 000~70 000 h时,材料的硬度下降较快,并在服役时间达到70 000 h后,硬度下降趋于平缓,微观上表现为4种强化机制对于材料硬度的影响。Abstract: Aiming at the detection of thermal aging state of P92 steel of boilers and main steam pipelines of thermal power plants in service, a thermal aging detection instrument based on MBN effect was developed. The MBN signals of P92 steel with different hardness were measured, and the wavelet packet algorithm based on the heuristic hard threshold principle was selected as the filtering algorithm. The relationships between the four eigenvalues of the MBN signals and the hardness values of P92 steel were obtained. Taking hardness as a parameter for evaluating the thermal aging state, the MBN signals were detected on P92 steel specimens with different service time, and the results showed that when the service time was less than 30 000 hours, there was a small increase in the hardness of the material, and the hardness of the material decreased faster when the service time was between 30 000 and 70 000 hours, and tended to decrease to a After the service time reached 70 000 hours, the decrease of hardness tended to level off, which was microscopically manifested as the influence of four strengthening mechanisms on the hardness of the material.
-
Keywords:
- magnetic Barkhausen effect /
- P92 steel /
- thermal aging /
- eigenvalue
-
-
[1] 王树东,吕为智.深度调峰形势下燃煤机组的价值量化评估[J]. 动力工程学报, 2020, 40(9): 701-706. [2] 张健.能源革命背景下煤炭企业发展战略浅析[J]. 辽宁经济, 2019, 429(12): 76-77. [3] 杨宝磊,赵美兰,邱亮.压水堆一回路主管道热老化现象研究现状[J].大型铸锻件,2023(2):48-52. [4] PEREZ-BENITEZ J A, CAPO-SANCHEZ J, ANGLADA-RIVERA J, et al. A model for the influence of microstructural defects on magnetic Barkhausen noise in plain steels[J]. Journal of magnetism and magnetic materials, 2005, 288: 433-442.
[5] 段鹏. 超超临界机组耐热钢和高温合金的性能劣化研究[D].北京:华北电力大学(北京),2021. [6] 袁周, 李建三, 卫海童, 等. 超超临界机组锅炉过热器用T92钢高温腐蚀试验[J]. 热力发电, 2017, 46(11): 80-84. [7] 王嘉星, 王海涛, 刘向兵, 等. 基于数字信号处理的核反应堆压力容器钢辐照脆化的巴克豪森噪声检测仪[J]. 无损检测, 2020, 42(7): 72-76. [8] 王荣山,任爱,钱王洁,等.巴克豪森噪声在电站用铁磁材料疲劳寿命评估领域的研究现状[J].压力容器,2012,29(12):52-56. [9] 梁茹,叶腾.基于小波变换的学前儿童注意力测试仪故障检测方法[J].自动化与仪器仪表,2023(2):7-11. [10] 马栋梁,周涛,冯祥,等.超临界水自然循环流量信号降噪分析[J].核动力工程,2019,40(2):155-160. [11] 尹玉雪. 基于小波包分析及神经网络的木材声学振动信号的研究[D].哈尔滨:东北林业大学,2021. [12] 雷春丽,曹鹏瑶,崔攀,等.样本熵和Vmd结合的轴承早期故障预测方法[J].机械设计与制造,2022(6):300-304. [13] 何存富,蔡燕超,刘秀成,等. 基于磁巴克豪森噪声的S136钢表面硬度定量预测模型对比[J].机械工程学报, 2019, 55(18): 15-21. [14] 陈俊豪,宁保群.P92钢高温蠕变过程中显微组织演变研究现状及强化途径[J].材料导报,2014, 28(17): 53-59.
计量
- 文章访问数: 3
- HTML全文浏览量: 0
- PDF下载量: 1