• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

基于频域稀疏盲解卷积的奥氏体不锈钢TOFD盲区小缺陷定量检测

廖静瑜, 孙旭, 刘梓昱, 金士杰, 张东辉, 林莉

廖静瑜, 孙旭, 刘梓昱, 金士杰, 张东辉, 林莉. 基于频域稀疏盲解卷积的奥氏体不锈钢TOFD盲区小缺陷定量检测[J]. 无损检测, 2023, 45(7): 70-75. DOI: 10.11973/wsjc202307014
引用本文: 廖静瑜, 孙旭, 刘梓昱, 金士杰, 张东辉, 林莉. 基于频域稀疏盲解卷积的奥氏体不锈钢TOFD盲区小缺陷定量检测[J]. 无损检测, 2023, 45(7): 70-75. DOI: 10.11973/wsjc202307014
LIAO Jingyu, SUN Xu, LIU Ziyu, JIN Shijie, ZHANG Donghui, LIN Li. Quantitative detection of small defects in TOFD dead zone of austenitic stainless steelbased on frequency domain sparse blind deconvolution[J]. Nondestructive Testing, 2023, 45(7): 70-75. DOI: 10.11973/wsjc202307014
Citation: LIAO Jingyu, SUN Xu, LIU Ziyu, JIN Shijie, ZHANG Donghui, LIN Li. Quantitative detection of small defects in TOFD dead zone of austenitic stainless steelbased on frequency domain sparse blind deconvolution[J]. Nondestructive Testing, 2023, 45(7): 70-75. DOI: 10.11973/wsjc202307014

基于频域稀疏盲解卷积的奥氏体不锈钢TOFD盲区小缺陷定量检测

基金项目: 

国家自然科学基金资助项目(51905079)

详细信息
    作者简介:

    廖静瑜(1985-),女,工程师,主要从事核工程无损检测研究工作

    通讯作者:

    林莉, E-mail:linli@dlut.edu.cn

  • 中图分类号: TG115.28

Quantitative detection of small defects in TOFD dead zone of austenitic stainless steelbased on frequency domain sparse blind deconvolution

  • 摘要: 针对超声衍射时差法(TOFD)检测奥氏体不锈钢近表面盲区内小尺寸缺陷时的信号混叠及结构噪声问题,提出了频域稀疏盲解卷积法。在厚为35 mm奥氏体不锈钢试块TOFD近表面检测盲区内加工深为3.0 mm,高为3.0 mm的人工缺陷,基于匹配追踪算法(MP)对TOFD试验信号进行稀疏分解,解耦噪声部分,再利用同态变换并结合L1,L2范数约束建立反演问题目标函数,并利用内点法求解。结果表明,在无需参考信号的情况下,该方法能够分离TOFD表面直通波和缺陷上、下端点衍射波,计算求得缺陷深为3.04 mm,高为2.65 mm,最大误差不超过11.7%。
    Abstract: To solve the problem of signal aliasing and structural noise in detecting small defects in the near-surface dead zone of austenitic stainless steel by time of flight diffraction (TOFD), a frequency domain sparse blind deconvolution method was proposed. The artificial defects with a depth of 3. 0 mm and a height of 3. 0 mm were processed in the dead zone of TOFD near surface detection of austenitic stainless steel test block with a thickness of 35 mm. The experimental signals of TOFD were sparsely decomposed based on Matching pursuit (MP) algorithm to decouple the noise parts. The objective function of inversion problem was established by homomorphic transformation combined with L1 and L2 norm constraints, and solved by interior point method. The results showed that without reference signal, the method can separate the direct wave and the diffraction wave on the upper and lower edge of the defect by TOFD. The calculated defect depth was 3. 04 mm, the height was 2. 65 mm, and the maximum error was less than 11.7%.
  • [1] 王长建, 杜南胜, 汪文锋.加氢装置TP321不锈钢管道焊缝裂纹产生原因分析[J].理化检验(物理分册), 2015, 51(6):445-448.
    [2] 严宇, 张晓峰, 杨会敏, 等.核电主管道奥氏体不锈钢焊缝的相控阵超声检测[J].无损检测, 2018, 40(2):24-28.
    [3]

    NATH S K, BALASUBRAMANIAM K, KRISHNAMURTHY C V, et al.Reliability assessment of manual ultrasonic time of flight diffraction (TOFD) inspection for complex geometry components[J].NDT & E International, 2010, 43:152-162.

    [4] 陈振华, 张翀, 李新蕾, 等.超声TOFD二次波检测技术在奥氏体不锈钢焊缝无损检测中的应用[J].无损检测, 2016, 38(6):1-5, 32.
    [5] 黄焕东, 胡利晨, 胡炜炜, 等.奥氏体不锈钢焊缝超声衍射时差法检测的有限元仿真及应用[J].无损检测, 2020, 42(7):5-9.
    [6] 张树潇, 谢雪, 刘丽丽, 等.基于频谱分析原理减小TOFD检测近表面盲区的方法[J].无损探伤, 2013, 37(6):20-21, 26.
    [7]

    JIN S J, SUN X, LUO Z B, et al.Quantitative detection of shallow subsurface cracks in pipeline with time-of-flight diffraction technique[J].NDT & E International, 2021, 118:102397.

    [8] 陈振华, 张翀, 卢超, 等.奥氏体不锈钢焊缝超声TOFD检测中声波传播特性分析及其应用[J].焊接学报, 2016, 37(8):91-95, 133.
    [9] 黎文超, 陈振华, 卢超.基于深度重采样叠加的不锈钢焊缝TOFD检测信号降噪技术[J].无损检测, 2021, 43(6):41-44.
    [10]

    LALITHAKUMARI S, PANDIAN R.Preprocessing of ultrasonic signals austenitic stainless steel weld at high temperature[J].Materials Today:Proceedings, 2020, 21:430-433.

    [11]

    HONARVAR F, SHEIKHZADEH H, MOLES M, et al.Improving the time-resolution and signal-to-noise ratio of ultrasonic NDE signals[J].Ultrasonics, 2004, 41(9):755-763.

    [12]

    SHAKIBI B, HONARVAR F, MOLES M D C, et al.Resolution enhancement of ultrasonic defect signals for crack sizing[J].NDT & E International, 2012, 52:37-50.

    [13]

    LI X A, LI X B, LIANG W, et al.Regularized minimum entropy deconvolution for ultrasonic[J].NDT & E International, 2012, 47:80-87.

    [14]

    LU J, DEMIRLI R, SANIIE J.Ultrasonic reflectivity function estimation using Cepstrum Sparse Deconvolution[C]//2016 IEEE International Ultrasonics Symposium (IUS).Tours, France:IEEE, 2016:1-4.

    [15]

    SUN X, LIN L, JIN S J.Improving time resolution of ultrasonic signals with frequency-domain sparse blind deconvolution (FSBD) method[J].Journal of Nondestructive Evaluation, 2022, 41(2):1-11.

    [16]

    SUN X, LIN L, MA Z Y, et al.Enhancement of time resolution in ultrasonic time-of-flight diffraction technique with frequency-domain sparsity-decomposability inversion (FDSDI) method[J].IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68(10):3204-3215.

    [17] 胡先龙, 季昌国, 刘建屏.衍射时差法(TOFD)超声波检测[M].北京:中国电力出版社, 2014.
    [18]

    LU Z K, YANG C, QIN D H, et al.Estimating the parameters of ultrasonic echo signal in the Gabor transform domain and its resolution analysis[J].Signal Processing, 2016, 120:607-619.

    [19]

    MALLAT S G, ZHANG Z F.Matching pursuits with time-frequency dictionaries[J].IEEE Transactions on Signal Processing, 1993, 41(12):3397-3415.

    [20]

    ADAM D, MICHAILOVICH O.Blind deconvolution of ultrasound sequences using nonparametric local polynomial estimates of the pulse[J].IEEE Transactions on Biomedical Engineering, 2002, 49(2):118-131.

    [21] 孙旭. 基于频域稀疏反演的超声TOFD检测盲区抑制与缺陷定量[D].大连:大连理工大学, 2022.
    [22]

    SOUSSEN C, IDIER J, CARCREFF E, et al.Ultrasonic nondestructive testing based on sparse deconvolution[J].Journal of Physics:Conference Series, 2012, 353:012018.

计量
  • 文章访问数:  7
  • HTML全文浏览量:  0
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-31
  • 刊出日期:  2023-07-09

目录

    /

    返回文章
    返回