• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

基于声发射信号的风电塔筒疲劳寿命预测

张鹏林, 高铭泽

张鹏林, 高铭泽. 基于声发射信号的风电塔筒疲劳寿命预测[J]. 无损检测, 2023, 45(7): 20-24,29. DOI: 10.11973/wsjc202307005
引用本文: 张鹏林, 高铭泽. 基于声发射信号的风电塔筒疲劳寿命预测[J]. 无损检测, 2023, 45(7): 20-24,29. DOI: 10.11973/wsjc202307005
ZHANG Penglin, GAO Mingze. Fatigue life prediction of wind turbine tower based on acoustic emission signal[J]. Nondestructive Testing, 2023, 45(7): 20-24,29. DOI: 10.11973/wsjc202307005
Citation: ZHANG Penglin, GAO Mingze. Fatigue life prediction of wind turbine tower based on acoustic emission signal[J]. Nondestructive Testing, 2023, 45(7): 20-24,29. DOI: 10.11973/wsjc202307005

基于声发射信号的风电塔筒疲劳寿命预测

基金项目: 

甘肃省自然科学基金资助项目(20JR5RA058)

详细信息
    作者简介:

    张鹏林(1973-),男,博士,研究员,主要从事无损检测新技术、无损评价等方面的研究

  • 中图分类号: TP18;TG142;TH17;TG115.28

Fatigue life prediction of wind turbine tower based on acoustic emission signal

  • 摘要: 针对风电塔筒疲劳寿命难以有效预测的问题,提出了基于声发射特征参数融合退化曲线和PSO-LSTM (粒子群-长短时记忆)寿命预测模型的疲劳寿命预测方法。首先在实验室条件下基于声发射技术采集风电塔筒原材料(Q355E)疲劳全过程的声发射信号,从原始信号的时域与频域特征中提取特征参量,之后应用PCA (主成分分析)方法对特征参量进行融合,将第一主成分作为融合之后的特征曲线;最后以LSTM模型为基础,使用PSO算法优化模型参数,并建立PSO-LSTM模型来进行寿命预测。结果表明,使用优化模型的预测精度比单一模型的要高,具备一定的工业前景。
    Abstract: Aiming at the problem that the fatigue life of wind power tower is difficult to predict effectively, a fatigue life prediction method based on acoustic emission characteristic parameter fusion (degradation curve) and PSO-LSTM (particle swarm optimization-long-short term memory) life prediction model was proposed. Firstly, acoustic emission signals of the whole process of fatigue of raw materials (Q355E) of wind power tower were collected based on acoustic emission technology under laboratory conditions, and characteristic parameters were extracted from the time-domain and frequency-domain characteristics of the original signals. Then PCA(principle component analysis) method was used to fuse the characteristic parameters, and the first principal component was used as the characteristic curve after fusion. Finally, based on LSTM model, PSO algorithm was used to optimize model parameters, and PSO-LSTM model was established to predict life. The results showed that the prediction accuracy of the optimized model was higher than that of the single model, which had a certain industrial prospects.
  • [1] 万远琛, 王凯, 初岳峰.海上风电运维的技术现状和发展综述[J].船舶工程, 2020, 42(12):20-25.
    [2] 许淳瑶, 葛立超, 冯红翠, 等.风力发电现状及叶片组成与回收利用综述[J].热力发电, 2022, 51(9):29-41.
    [3]

    ZIEGLER L, GONZALEZ E, RUBERT T, et al.Lifetime extension of onshore wind turbines:a review covering Germany, Spain, Denmark, and the UK[J].Renewable and Sustainable Energy Reviews, 2018, 82:1261-1271.

    [4] 姜宜成.风电塔筒检测中声发射技术的应用研究[D].兰州:兰州理工大学, 2016.
    [5] 邹旺, 吉畅.轴承剩余使用寿命预测方法研究[J].科技创新与应用, 2022, 12(26):133-136, 140.
    [6]

    CHAI M Y, HOU X L, ZHANG Z X, et al.Identification and prediction of fatigue crack growth under different stress ratios using acoustic emission data[J].International Journal of Fatigue, 2022, 160:106860.

    [7] 王向红, 朱昌明, 毛汉领, 等.基于声发射技术的水轮机转轮叶片疲劳裂纹扩展速率实验研究[J].中国机械工程, 2009, 20(7):847-851.
    [8] 杨梦迪, 贺敬良, 陈勇, 等.基于灰色神经网络的金属疲劳寿命预测研究[J].冶金与材料, 2021, 41(5):14-16.
    [9] 李伟阳.基于声发射信号及改良粒子滤波算法的中碳钢试件疲劳寿命预测研究[D].沈阳:东北大学, 2019.
    [10] 杨宇, 王彬文, 祁小凤.面向全尺寸民机结构疲劳试验的声发射监测技术[J].航空学报, 2022, 43(6):527044.
    [11] 沈功田, 耿荣生, 刘时风.声发射信号的参数分析方法[J].无损检测, 2002, 24(2):72-77.
    [12] 李丽, 牛奔.粒子群优化算法[M].北京:冶金工业出版社, 2009.
    [13]

    HOCHREITER S, SCHMIDHUBER J.Long short-term memory[J].Neural Computation, 1997, 9(8):1735-1780.

计量
  • 文章访问数:  5
  • HTML全文浏览量:  0
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-02
  • 刊出日期:  2023-07-09

目录

    /

    返回文章
    返回