Alternating current field measurement instrument for defects intelligent detection based on FPGA
-
摘要: 石油石化行业中,碳钢结构物长期受到腐蚀、应力等因素的影响,表面易产生复杂裂纹,复杂裂纹的检测分析需要强大的数据处理能力,对检测仪器的功能架构提出了诸多挑战。首先基于交流电磁场检测(ACFM)技术,建立了不同类型裂纹的仿真模型,分析结构物表面感应电流分布,探究缺陷形貌-电流扰动-磁场畸变之间的映射关系,提出了基于特征信号Bz的缺陷智能识别算法;然后基于FPGA (现场可编程逻辑门阵列)平台,构建交流电磁场缺陷智能检测仪,实现了激励信号发生、检测信号采集、处理和显示等功能,并开展了人工预制裂纹的识别试验。试验结果表明,该交流电磁场缺陷智能检测仪可以实现不同角度直线裂纹和复杂裂纹的表面轮廓重构与识别。
-
关键词:
- 交流电磁场检测 /
- 现场可编程逻辑门阵列 /
- 智能检测仪器 /
- 智能识别 /
- 轮廓重构
Abstract: In the petroleum industry, carbon steel structure is affected by corrosion and stress for a long time, complex cracks are easily introduced in the surface of the carbon steel structures. The detection and analysis of complex cracks require strong data processing ability, which poses many challenges to the functional architecture of detection instruments. Based on the principle of alternating current field measurement (ACFM), the finite element model of different types of cracks was established in the paper. The induced current distribution on the surface of the structure was analyzed. The mapping relationship between defect morphology-current perturbation-magnetic field distortion was explored. An intelligent defect identification algorithm based on the characteristic signal Bz was proposed. Based on FPGA (Field Programmable Gate Array) platform, a ACFM instrument for defects intelligent detection was built. The instrument realized the excitation signal generation and the detection signal collection, processing and display. Artificial crack identification experiments were carried out. The experimental results showed that the ACFM instrument for defects intelligent detection can realize the reconstruction and recognition of linear cracks and complex cracks at different angles. -
-
[1] PAUL W, SAMMARCO.Distribution and concentrations of petroleum hydrocarbons associated with the BP/deepwater horizon oil spill, gulf of mexico[J].Marine Pollution Bulletin, 2013, 73(1):129-143.
[2] 左晶晶, 李昕, 王文华, 等.极端海冰荷载作用下海上升压站平台安全评价[J].太阳能学报, 2018, 39(9):2508-2514. [3] 罗华权, 巨西民, 左远峰.管道裂纹的超声定量检测技术[J].无损检测, 2009, 31(11):894-896. [4] 文毅, 冯强, 李燕.超声检测在管道焊缝腐蚀中的应用[J].无损检测, 2014, 36(2):50-52. [5] 刘刚.管道漏磁内检测关键技术问题研究[D].沈阳:沈阳工业大学, 2010. [6] 陈长龙.无损检测技术在压力管道的应用[J].化工设计通讯, 2018, 44(7), 80-81. [7] 任吉林.涡流检测技术近20年的进展[J].无损检测, 1998(5):121-125, 128. [8] LI W, CHEN G, LIU F, et al. Analysis of the inducing frequency of a U-shaped ACFM system[J]. NDT & E International, 2011, 44(3):324-328.
[9] PAPAELIAS M P, LUGG M C, ROBERTS C, et al. High-speed inspection of rails using ACFM techniques[J]. NDT & E International, 2009, 42(4):328-335.
[10] 孙长保, 胡春阳, 董艳冲.基于交流电磁场检测技术的裂纹缺陷信号识别方法[J].无损检测, 2018, 40(7):54-59. [11] 袁新安, 李伟, 殷晓康, 等.基于ACFM的奥氏体不锈钢不规则裂纹可视化重构方法研究[J].机械工程学报, 2020, 56(10):27-33. [12] YIN L Y, WU J D, YE B, et al.Imaging and detection of cracks based on a multi-frequency electromagnetic scanning instrument and SVM[C]//2017 IEEE International Conference on Imaging Systems and Techniques (IST).Beijing, China:IEEE, 2018.
[13] 胡孟君.基于FPGA的便携式超声探伤仪硬件系统设计与实现[D].南京:东南大学, 2019.
计量
- 文章访问数: 10
- HTML全文浏览量: 0
- PDF下载量: 4