CT measurement method for flow channel size of jet fuel nozzle assembly
-
摘要: 航空燃油喷嘴组件流道尺寸的控制对于航空器的可靠性和安全性具有至关重要的意义,传统方法是通过间接的流量试验来进行筛选,该方法不仅成本高而且效率低。提出了一种基于CT检测体数据的喷嘴组件流道偏移量的测量方法,其首先采用RSF (区域可扩展拟合)模型分割喷嘴CT体数据的流道区域,然后提取流道内外轮廓面,接着采用最小二乘拟合方法计算流道内壁和外壁的圆方程,根据内外圆心距离得到流道的偏移量。采用该方法对标准喷嘴试样的CT图像进行测量,结果表明其能够精确提取流道轮廓表面数据,测量的线性误差为0.010 4 mm,具有一定的工程应用价值。Abstract: The control of the flow channel size of the jet fuel nozzle assembly is of great significance to the reliability and safety of the aircraft. The traditional method is to screen through indirect flow test, which is not only cost-effective but also inefficient. This paper presents a measurement method of flow channel offset of nozzle assembly based on CT volume data. Firstly, RSF (Region-Scalable Fitting) model was used to segment the flow channel area of nozzle CT volume data, and then the inner and outer contour surfaces of the flow channel wereextracted. Then, the circular equations of the inner and outer walls of the flow channel werecalculated by the least square fitting method, and the flow channel offset wasobtained according to the inner and outer center distances. The CT image of the standard nozzle sample wasmeasured. The results showed that the method can accurately extract the contour surface of the flow channel, and the uncertainty of measurement was 0. 010 4 mm. It hada certain engineering application value.
-
Keywords:
- aviation fuel nozzle /
- runner /
- CT /
- size measurement
-
-
[1] MILAN S, VACLAV H, ROGER B著, 兴军亮, 艾海舟, 等译.图像处理、分析与机器视觉[M].北京:清华大学出版社, 2016. [2] 傅健, 路宏年, 侯涛, 等.基于ICT图像的航空发动机涡轮叶片壁厚尺寸精密测量方法[J].航空学报, 2006, 27(2):325-330. [3] HARALICK R M.Digital step edges from zero crossing of second directional derivatives[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6(1):58-68.
[4] TANABE J, MILLER D, TREGELLAS J, et al.Comparison of detrending methods for optimal fMRI preprocessing[J].Neuro Image, 2002, 15(4):902-907.
[5] YIN S L, ZHANG Y, KARIM S.Large scale remote sensing image segmentation based on fuzzy region competition and Gaussian mixture model[J].IEEE Access, 2018, 6:26069-26080.
[6] 王雪虎, 杨健, 艾丹妮, 等.结合先验稀疏字典和空洞填充的CT图像肝脏分割[J].光学精密工程, 2015, 23(9):2687-2697. [7] ALMOND D, SOUZA N A, SEENIVASAGAM V.Colour image segmentation using region-growing and region-merging methods[J].International Journal of Biomedical Engineering and Technology, 2011, 7(2):165.
[8] ADAMS R, BISCHOF L.Seeded region growing[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(6):641-647.
[9] 肖婷.基于深度特征迁移与融合的乳腺超声图像分类[D].重庆:重庆大学, 2018. [10] LI C M, KAO C Y, GORE J C, et al.Minimization of region-scalable fitting energy for image segmentation[J].IEEE Transactions on Image Processing:a Publication of the IEEE Signal Processing Society, 2008, 17(10):1940-1949.
[11] 祝强, 徐臻.改进的Kasa算法及其在圆拟合中的精度分析[J].测控技术, 2016, 35(1):30-33, 37.
计量
- 文章访问数: 5
- HTML全文浏览量: 0
- PDF下载量: 1