Robot and ACFM collaborative detection system based on space-time synchronization
-
摘要: 针对交流电磁场检测(ACFM)技术在机器人自动化检测过程中对时空同步的需求,围绕工业机器人与ACFM协同检测方法展开系统研究,解决机器人与ACFM协同检测过程中位置与磁场信号同步提取方法、三维磁场特征信号成像、缺陷量化与定位方法等关键问题。搭建完整的一套机器人与ACFM协同检测试验系统并对系统进行测试。结果表明,时空同步协同检测系统能够实现试件表面缺陷检测成像显示和精准定位与量化,位置同步精度为0.5 mm,可提升ACFM自动化检测过程中的效率和精度。Abstract: Aiming at the requirements of space-time synchronization in the process of robot automatic detection based on ACFM technology, the collaborative detection method of industrial robot and ACFM was systematically studied. The key problems such as synchronous acquisition method of position and magnetic field signal, three-dimensional magnetic field characteristic signal imaging, defect quantification and location method in the process of cooperative detection of robot and ACFM were solved consequently. A complete set of robot and ACFM collaborative detection experimental system was developed and systematically tested. The results show that the experimental system of space-time synchronization can realize surface defect detection and imaging, precise positioning and quantification of surface defect in specimens. The location synchronization accuracy is 0.5 mm, which will promote the efficiency and accuracy of ACFM detection automation.
-
-
[1] 张曙.2030的未来工厂[J].机械制造与自动化, 2018, 47(3):1-8. [2] 张明文.工业机器人基础与应用[M].北京:机械工业出版社, 2018. [3] 谢邦晋.基于机器视觉的工业机器人定位抓取技术[J].内燃机与配件, 2018(21):216-218. [4] 王迎晖.基于机器视觉的物料分拣工业机器人技术研究[J].仪器仪表标准化与计量, 2018(5):28-30. [5] ROWSHANDEL H.Characterisation of clustered cracks using an ACFM sensor and application of an artificial neural network[J].NDT & E International, 2018, 98:80-88.
[6] ISAWA K, TAKAGI S, TOSAKA S, et al.Practical scanning SQUID system for nondestructive evaluation[J].IEEE Transactions on Applied Superconductivity, 2005, 15(2):715-718.
[7] OLIVIERI P, BIRGLEN L, MALDAGUE X, et al. Coverage path planning for eddy current inspection on complex aeronautical parts[J]. Robotics & Computer Integrated Manufacturing, 2014, 30(3):305-314.
[8] 徐小云, 颜国正, 鄢波.一种新型管道检测机器人系统[J].上海交通大学学报, 2004, 38(8):1324-1327. [9] 江健, 郭天太, 吴思源, 等.曲面构件一体化超声自动检测方法研究[J].传感技术学报, 2006, 19(2):383-387, 392. [10] 刘新柱, 王树林, 姜庆昌, 等.一种超声检测机械手的结构设计[J].佳木斯大学学报(自然科学版), 2014, 32(2):283-284, 290. [11] 邓平.深水条件下基于ROV进行ACFM检测的方法[J].海洋工程装备与技术, 2018, 5(增刊1):177-181. [12] 刘波, 姚沛衡, 禹岳, 等.高铁电机精密铜导条机器人超声无损检测技术研究[J].传感技术学报, 2021, 34(9):1146-1151. [13] 李伟.基于交流电磁场的缺陷智能可视化检测技术研究[D].青岛:中国石油大学, 2007. [14] 王景林.ACFM技术的缺陷识别与量化反演系统设计及试验[D].南昌:南昌航空大学, 2019. [15] LI W, YUAN X, CHEN G, et al. A feed-through ACFM probe withsensor array for pipe string cracks inspection[J]. NDT&E International, 2014, 67:17-23.
[16] LI W, YUAN X A, CHEN G M, et al.Detection of cracks in metallic objects by arbitrary scanning direction using a double U-shaped orthogonal ACFM probe[J].Materials Transactions, 2016, 57(5):608-612.
计量
- 文章访问数: 1
- HTML全文浏览量: 0
- PDF下载量: 3