• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

管道杂散电流干扰及防腐层破损分析

包黄莉, 汤彬坤, 冯阳, 吴涛, 曾小康, 钟剑锋, 伏喜斌, 黄学斌, 钟舜聪

包黄莉, 汤彬坤, 冯阳, 吴涛, 曾小康, 钟剑锋, 伏喜斌, 黄学斌, 钟舜聪. 管道杂散电流干扰及防腐层破损分析[J]. 无损检测, 2023, 45(5): 1-5,15. DOI: 10.11973/wsjc202305001
引用本文: 包黄莉, 汤彬坤, 冯阳, 吴涛, 曾小康, 钟剑锋, 伏喜斌, 黄学斌, 钟舜聪. 管道杂散电流干扰及防腐层破损分析[J]. 无损检测, 2023, 45(5): 1-5,15. DOI: 10.11973/wsjc202305001
BAO Huangli, TANG Binkun, FENG Yang, WU Tao, ZENG Xiaokang, ZHONG Jianfeng, FU Xibin, HUANG Xuebin, ZHONG Shuncong. Analysis of pipeline stray current interference and corrosion protection coating damage[J]. Nondestructive Testing, 2023, 45(5): 1-5,15. DOI: 10.11973/wsjc202305001
Citation: BAO Huangli, TANG Binkun, FENG Yang, WU Tao, ZENG Xiaokang, ZHONG Jianfeng, FU Xibin, HUANG Xuebin, ZHONG Shuncong. Analysis of pipeline stray current interference and corrosion protection coating damage[J]. Nondestructive Testing, 2023, 45(5): 1-5,15. DOI: 10.11973/wsjc202305001

管道杂散电流干扰及防腐层破损分析

基金项目: 

厦门市市场监督管理局科技项目(XMSJ201913);福建省市场监督管理局科技项目(FJMS2019044);华润燃气2019年科技创新项目(KC2019007JT)

详细信息
    作者简介:

    包黄莉(1989-),女,工程师,主要从事燃气管道工艺管理,燃气管道检验检测,燃气安全运营管理等相关工作

    通讯作者:

    钟舜聪, E-mail:sczhong@fzu.edu.cn

  • 中图分类号: U223.6+2;TG115.28

Analysis of pipeline stray current interference and corrosion protection coating damage

  • 摘要: 建立管道杂散电流模型,研究杂散电流与地铁和变电所间距、土壤电阻率、地铁牵引电压以及走行轨和埋地管道间距之间的关系及其对防腐层破损管道的干扰规律。结果表明,地铁与变电所间距的减小、地铁牵引电压的减小、土壤电阻率的增大、走行轨与埋地管道间距的增大均会减少杂散电流对管道的干扰。埋地管道杂散电流随着管道防腐层破损面积的增大而增大,且变电所附近的破损点腐蚀比较严重。从防腐层破损时的管地电位分布图可以直观确定破损点的位置,从而为管道防腐层破损点定位提供新的分析手段,为钢制天然气管道潜在高危区域的判断提供理论支撑与指导,同时能够为新建管道的地段选择提供理论依据。
    Abstract: A pipeline stray current model was established, and the relationship between stray current and the distance between metro and substation, soil resistivity, metro traction voltage and the distance between rail and buried pipeline, as well as its interference law to pipeline with damaged anticorrosive layer was studied. The results show that the interference of the stray current on the pipeline decreases with the decrease of the distance between the metro and the substation and the traction voltage of the metro, also decreases with the increase of the soil resistivity and the distance between the rail and the buried pipeline. The stray current of buried pipelines increases as the damaged area of the pipeline coating increases, and the damaged pitting corrosion near the substation is more serious. The coating damage pipe-to-soil potential distribution can intuitively determine the location of damaged point. It provides a new positioning analysis method of pipeline anticorrosive coating damage point, and theoretical support and guidance for stray current on steel gas pipeline of potential high risk areas of judgment and as well as theoretical basis for the location selection for new pipelines.
  • [1] 蔡力, 王建国, 樊亚东, 等.地铁走行轨对地过渡电阻杂散电流分布的影响[J].高电压技术, 2015, 41(11):3604-3610.
    [2] 赵昕, 顾保南.2018年中国城市轨道交通运营线路统计和分析[J].城市轨道交通研究, 2019, 22(1):1-7.
    [3] 吴昊, 王奎昌, 张文生, 等.轻轨杂散电流对埋地煤气管线影响研究[J].腐蚀科学与防护技术, 2018, 30(6):635-640.
    [4] 刘争, 李威力, 钟周全.地铁杂散电流的危害及检测实例[J].全面腐蚀控制, 2016, 30(9):56-58.
    [5] 赵学芬, 姚安林, 赵忠刚.二氧化碳腐蚀影响因素的层次分析法[J].腐蚀与防护, 2006, (4):191-193+207.
    [6] 刘杰, 杜艳霞, 覃慧敏, 等.地铁杂散电流对埋地管道的干扰规律[J].腐蚀与防护, 2019, 40(1):43-47, 70.
    [7]

    CHARALAMBOUS C A, AYLOTT P. Dynamic stray current evaluations on cut-and-cover sections of DC metro systems[J].IEEE Transactions on Vehicular Technology, 2014, 63(8):3530-3538.

    [8]

    SOLGAARD A O S, CARSANA M, GEIKER M R, et al. Experimental observations of stray current effects on steel fibres embedded in mortar[J]. Corrosion Science, 2013, 74:1-12.

    [9]

    BERTOLINI L, CARSANA M, PEDEFERRI P. Corrosion behaviour of steel in concrete in the presence of stray current[J]. Corrosion Science, 2007, 49(3):1056-1068.

    [10] 蔡智超, 程浩, 林知明. 考虑地铁车辆牵引因素下杂散电流的规律研究[J].电工电能新技术, 2018, 182(8):85-91.
    [11]

    ZABOLI A, VAHIDI B, YOUSEFI S, et al. Evaluation and control of stray current in DC-electrified railway systems[J].IEEE Transactions on Vehicular Technology, 2017, 66(2):974-980.

    [12] 朱峰, 李嘉成, 曾海波, 等.城市轨道交通轨地过渡电阻对杂散电流分布特性的影响[J].高电压技术, 2018, 44(8):2738-2745.
    [13] 曹方圆, 孟晓波, 廖永力, 等.直流接地极对埋地金属管道影响的电路模型及应用[J].电网技术, 2016, 40(10):3258-3265.
    [14] 董亮, 姜子涛, 杜艳霞, 等.地铁杂散电流对管道牺牲阳极的影响及防护[J].石油学报, 2016, 37(1):117-124.
    [15] 娄志标, 秦朝葵, 夏沁, 等.基于Dymola的燃气管道杂散电流防护模型[J].油气储运, 2014, 33(9):983-987, 991.
    [16] 封琼, 张亚萍, 汪洋, 等.基于埋地金属管道杂散电流的腐蚀与防护[J]. 腐蚀与防护, 2017, 38(2):91-95.
    [17]

    ZHANG Y P, FENG Q, HANA X, et al. Numerical modelling of buried pipelines under DC stray current corrosion[J]. Journal of Electrochemical Science and Engineering, 2019, 9(2):125-134.

    [18] 刘瑶, 谭松玲, 邢琳琳, 等. 北京埋地燃气管道地铁杂散电流干扰影响现场检测及规律分析[J]. 腐蚀科学与防护技术, 2019, 31(4):429-435.
    [19] 李琴, 陈奔, 黄志强, 等.直流电车杂散电流对城市燃气管道电腐蚀的影响规律研究[J].材料保护, 2019, 52(4):66-72.
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-02
  • 刊出日期:  2023-05-09

目录

    /

    返回文章
    返回