• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

基于LSTM的ACFM在线缺陷判定方法

卞向南, 高宇, 王宇欣, 郑岳山, 袁新安, 李春棚, 尚亚期

卞向南, 高宇, 王宇欣, 郑岳山, 袁新安, 李春棚, 尚亚期. 基于LSTM的ACFM在线缺陷判定方法[J]. 无损检测, 2023, 45(2): 40-43,65. DOI: 10.11973/wsjc202302008
引用本文: 卞向南, 高宇, 王宇欣, 郑岳山, 袁新安, 李春棚, 尚亚期. 基于LSTM的ACFM在线缺陷判定方法[J]. 无损检测, 2023, 45(2): 40-43,65. DOI: 10.11973/wsjc202302008
BIAN Xiangnan, GAO Yu, WANG Yuxin, ZHENG Yueshan, YUAN Xin, LI Chunpeng, SHANG Yaqi. ACFM online defect determination method based on LSTM[J]. Nondestructive Testing, 2023, 45(2): 40-43,65. DOI: 10.11973/wsjc202302008
Citation: BIAN Xiangnan, GAO Yu, WANG Yuxin, ZHENG Yueshan, YUAN Xin, LI Chunpeng, SHANG Yaqi. ACFM online defect determination method based on LSTM[J]. Nondestructive Testing, 2023, 45(2): 40-43,65. DOI: 10.11973/wsjc202302008

基于LSTM的ACFM在线缺陷判定方法

基金项目: 

国家科技重大专项(2018ZX06002006)

详细信息
    作者简介:

    卞向南(1988-),男,硕士,高级工程师,主要研究方向为核电厂非标设备设计

    通讯作者:

    袁新安, E-mail:xinancom@upc.edu.cn

  • 中图分类号: TP216;TG115.28

ACFM online defect determination method based on LSTM

  • 摘要: 交流电磁场检测(ACFM)技术在进行缺陷判定时,存在检测数据追溯、现场判定缺陷困难等问题。分析了ACFM检测信号特征,开发了一种部署在云服务器上的在线数据存储、检测信息显示以及缺陷智能判定的方法。该系统主要由检测仪与云端服务器组成,检测时仪器采集检测信号,将检测信息实时传输至云服务器,云服务器存储检测信息并通过网页显示,同时基于长短期记忆神经网络(LSTM)的缺陷判定算法分析检测信息并返回结果至检测仪。以铝板试件作为检测对象,对系统进行功能测试。试验结果表明,开发的在线缺陷判定算法实现了交流电磁场检测系统数据存储、信息查看、缺陷判定的目标。
    Abstract: When the alternating current field measurement(ACFM) technology is used for defect determination, there are some problems such as traceability of detection data and difficulty in determining defects on site. The characteristics of ACFM inspection signals is analyzed in this thesis, and the method is proposed which deploys online data storage, inspection information display, and intelligent determination of defects method on the cloud server. The detection system is mainly composed of a detector and a cloud server. The instrument collects detection signals and transmits the detection information to the cloud server in real time. The cloud server stores the detection information and displays it on the web. At the same time, the detection information is analyzed by the defect judgment algorithm based on long short-term memory neural network (LSTM), and the results are is returned to the detector. Taking the aluminum plate specimen as the detection object, the functional test of the experimental system is carried out. The experimental results show that the developed online defect determination algorithm achieves the goals of data storage, information viewing and defect determination in the ACFM detection system.
  • [1] 葛玖浩, 杨晨开, 胡宝旺, 等.交流电磁场检测技术钢轨表面裂纹高速检测研究[J].机械工程学报, 2021, 57(18):66-74.
    [2] 王景林, 任尚坤, 张丹, 等.基于ACFM检测技术的表面裂纹特征评价方法研究[J].中国测试, 2019, 45(1):40-46.
    [3] 袁新安, 李伟, 殷晓康, 等.基于ACFM的奥氏体不锈钢不规则裂纹可视化重构方法研究[J].机械工程学报, 2020, 56(10):27-33.
    [4] 郑玲慧, 任尚坤, 王景林.ACFM技术的表面裂纹识别和尺寸反演算法研究[J].测控技术, 2020, 39(5):80-85, 106.
    [5]

    LI W, YUAN X A, CHEN G M, et al.High sensitivity rotating alternating current field measurement for arbitrary-angle underwater cracks[J].NDT & E International, 2016, 79:123-131.

    [6] 李冰洁.MATLAB图像处理技术在车牌识别中的应用[J].上海电气技术, 2022, 15(1):45-48.
    [7] 李相霏, 韩珂.基于Flask框架的疫情数据可视化分析[J].计算机时代, 2021(12):60-63, 68.
    [8] 胡四海, 李志华.基于STM32和LabVIEW的无线温湿度检测系统[J].中国测试, 2015, 41(5):99-102.
计量
  • 文章访问数:  3
  • HTML全文浏览量:  0
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-16
  • 刊出日期:  2023-02-09

目录

    /

    返回文章
    返回