• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

基于本征图像分解的焊缝提取算法

纪象民, 曹志峰, 任传鹤, 王延东

纪象民, 曹志峰, 任传鹤, 王延东. 基于本征图像分解的焊缝提取算法[J]. 无损检测, 2023, 45(2): 33-39. DOI: 10.11973/wsjc202302007
引用本文: 纪象民, 曹志峰, 任传鹤, 王延东. 基于本征图像分解的焊缝提取算法[J]. 无损检测, 2023, 45(2): 33-39. DOI: 10.11973/wsjc202302007
JI Xiangmin, CAO Zhifeng, REN Chuanhe, WANG Yandong. Weld seam extraction algorithm based on intrinsic image decomposition[J]. Nondestructive Testing, 2023, 45(2): 33-39. DOI: 10.11973/wsjc202302007
Citation: JI Xiangmin, CAO Zhifeng, REN Chuanhe, WANG Yandong. Weld seam extraction algorithm based on intrinsic image decomposition[J]. Nondestructive Testing, 2023, 45(2): 33-39. DOI: 10.11973/wsjc202302007

基于本征图像分解的焊缝提取算法

详细信息
    作者简介:

    纪象民(1968-),男,硕士,高级工程师,主要从事特种设备检验检测,质量管理以及科研研发等工作

    通讯作者:

    任传鹤, E-mail:18840837927@163.com

  • 中图分类号: TG115.28

Weld seam extraction algorithm based on intrinsic image decomposition

  • 摘要: 基于被动式视觉传感器的焊缝提取算法受自然光照等条件的制约,发展较为缓慢。针对这一问题,提出了一种基于本征图像分解的焊缝提取算法。首先,通过预处理抑制原始焊缝图像中的噪声;其次,基于梯度稀疏先验,将预处理图像分解为前景图层和背景图层,其中,前景图层仅包含图像边缘等结构信息,背景图层中则包含光照等平滑信息;最后,对前景图层进行Gamma变换,增强焊缝区域特征,削弱光照条件对算法的影响。试验结果表明,该算法满足检测的准确度和实时性要求,达到了辅助爬壁机器人定位焊缝位置的目的。
    Abstract: Due to the constraints of natural lighting and other conditions, the development of weld seam extraction algorithms based on passive vision sensors is relatively slow. Aiming at this problem, this paper proposes a welding seam extraction algorithm based on intrinsic image decomposition. Firstly, the noise in the original weld image is suppressed by preprocessing, and secondly, the preprocessed image is decomposed into foreground and background layers based on gradient sparse prior. Among them, the foreground layer only contains structural information such as image edges, while the background layer contains smooth information such as lighting. Finally, Gamma transform is performed on the foreground layer to enhance the characteristics of the weld area and weaken the influence of lighting conditions on the algorithm. The experimental results show that the algorithm meets the requirements of the accuracy and real-time performance, and achieves the purpose of assisting the wall-climbing robot to locate the weld position.
  • [1] 潘焕焕, 赵言正, 王炎.锅炉水冷壁清扫、检测爬壁机器人的研制[J].中国机械工程, 2000, 11(4):372-375.
    [2] 田兰图.油罐检测爬壁机器人技术及系统研究[D].北京:清华大学, 2004.
    [3] 李志海.轮足混合驱动爬壁机器人及其关键技术的研究[D].哈尔滨:哈尔滨工业大学, 2010.
    [4]

    XIAO Z W.Research on a trilines laser vision sensor for seam tracking in welding[C]//Lecture Notes in Electrical Engineering.Berlin, Heidelberg:Springer Berlin Heidelberg, 2011.

    [5]

    KIDDEE P, FANG Z J, TAN M.An automated weld seam tracking system for thick plate using cross mark structured light[J].The International Journal of Advanced Manufacturing Technology, 2016, 87(9):3589-3603.

    [6]

    ZHANG K, CHEN Y X, GUI H, et al.Identification of the deviation of seam tracking and weld cross type for the derusting of ship hulls using a wall-climbing robot based on three-line laser structural light[J].Journal of Manufacturing Processes, 2018, 35:295-306.

    [7] 莫玲, 高向东, 萧振林, 等.微间隙焊缝磁光图像增强方法[J].焊接技术, 2015, 44(6):17-22.
    [8] 刘涛, 左继业, 张晓森, 等.环形焊缝的双目视觉定位与跟踪研究[J].机械科学与技术, 2021, 40(6):928-933.
    [9]

    XU Y L, FANG G, CHEN S B, et al.Real-time image processing for vision-based weld seam tracking in robotic GMAW[J].The International Journal of Advanced Manufacturing Technology, 2014, 73(9):1413-1425.

    [10]

    DINHAM M, FANG G.Autonomous weld seam identification and localisation using eye-in-hand stereo vision for robotic arc welding[J].Robotics and Computer-Integrated Manufacturing, 2013, 29(5):288-301.

    [11] 王文超, 高向东, 丁晓东, 等.无坡口对接焊缝特征角点检测方法[J].焊接学报, 2018, 39(9):61-64, 131.
    [12]

    ZHANG M L, DESROSIERS C.Image denoising based on sparse representation and gradient histogram[J].IET Image Processing, 2017, 11(1):54-63.

    [13]

    LI Y, BROWN M S.Single image layer separation using relative smoothness[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition.OH, USA:IEEE, 2014.

    [14]

    BAI Z J, CASSANI D, DONATELLI M, et al.A fast alternating minimization algorithm for total variation deblurring without boundary artifacts[J].Journal of Mathematical Analysis and Applications, 2014, 415(1):373-393.

    [15] 马宝琰, 汤磊, 赵晶, 等.风电叶片图像直线特征检测与拼接方法[J].哈尔滨理工大学学报, 2020, 25(5):83-92.
计量
  • 文章访问数:  6
  • HTML全文浏览量:  0
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-21
  • 刊出日期:  2023-02-09

目录

    /

    返回文章
    返回