Wall thickness monitoring of shale gas pipeline based on flexible array piezoelectric sensor
-
摘要: 页岩气管道结构复杂,存在曲面、弯头、三通、四通等结构,而且冲蚀与腐蚀造成的壁厚变化区域较大且规律不均匀,导致常规单点超声监测方法难以实现页岩气管道壁厚全覆盖有效监测,带来壁厚变化危险点漏检的风险。为此,针对页岩气管道大面积、高精度、高温(100℃)壁厚在线监测难点,提出了基于柔性阵列压电传感的页岩气管道壁厚监测方法,初步设计制作了耐高温多通道柔性阵列压电传感系统,并进行高温、振动、精度和长期监测试验。试验结果表明,该监测方法具有较高的精度和稳定性,可实现页岩气管道壁厚长期大面积监测,为页岩气管道的安全运行与维护提供了一定参考。Abstract: The structure of shale gas pipelines is complex, with surface structures such as curved surfaces, elbows, tees, crosses, etc., and the wall thickness variation area caused by erosion and corrosion is large and irregular. This makes it difficult for conventional single-point ultrasonic monitoring methods to achieve full-coverage monitoring of shale gas pipeline wall thickness, which may result in undetected dangerous points of wall thickness change. Therefore, aiming at the difficulties in online monitoring of large-area, high-precision and high-temperature (100 ℃) wall thickness of shale gas pipelines, a wall thickness monitoring method based on flexible array piezoelectric sensor was proposed. A high temperature resistant multi-channel flexible array piezoelectric sensing system was designed and fabricated, and high temperature, vibration, precision and long-term monitoring tests were carried out. The test results show that the new monitoring method has high accuracy and stability, and can realize long-term large-area monitoring of the wall thickness of shale gas pipelines, which provides conference for the safe operation and maintenance of shale gas pipelines.
-
-
[1] 岳明,汪运储.页岩气井下油管和地面集输管道腐蚀原因及防护措施[J].钻采工艺,2018,41(5):125-127. [2] 高国德,周建荣,曹虎麟,等.南川页岩气集输管道穿孔原因与防蚀措施探讨[J].清洗世界,2020,36(10):98-99. [3] 张权,王明生,刘袭袭.页岩气加砂压裂高压管汇失效爆裂风险的控制措施[J].化工管理,2021(10):137-138. [4] 万正军,廖俊必,王裕康,等.基于电位列阵的金属管道坑蚀监测研究[J].仪器仪表学报,2011,32(1):19-25. [5] GAN F J,WAN Z J,LIAO J B,et al.High-accuracy evaluation of pitting corrosion in field signature method[J].Insight-Non-destructive Testing and Condition Monitoring,2014,56(11):613-616.
[6] 李宇庭,甘芳吉,万正军,等.场指纹法无损监测技术综述[J].仪器仪表学报,2016,37(8):1781-1791. [7] 刘海锋,王虎,刘伟,等.基于短栅区光纤光栅传感器的油气管线腐蚀在线监测系统研究[J].传感技术学报,2013,26(10):1379-1383. [8] WANG Z C,LIU M Y,QU Y Z,et al.The detection of the pipe crack utilizing the operational modal strain identified from fiber Bragg grating[J].Sensors (Basel,Switzerland),2019,19(11):2556.
[9] 任亮,程祥,姜涛.基于光纤光栅应变箍传感器的管道局部腐蚀监测[J].油气储运,2017,36(3):303-309. [10] 叶至灵,韩赞东.燃气管道腐蚀缺陷电磁超声检测方法[J].仪表技术与传感器,2020(8):100-103. [11] 薛建虹,黎宇,孙杰,等.在役油气管道超声导波腐蚀检测技术应用[J].石油化工腐蚀与防护,2021,38(1):29-32. [12] 林亮亮,郭勇,刘健,等.超声导波技术在管道腐蚀检测中的应用[J].石油和化工设备,2021,24(7):125-127,130. [13] 文毅,冯强,李燕.超声检测在管道焊缝腐蚀中的应用[J].无损检测,2014,36(2):50-52. [14] 段建瑞,李斌,李帅臻.常用新型柔性传感器的研究进展[J].传感器与微系统,2015,34(11):1-4,11. [15] 郭师峰,李叶海,李振,等.柔性超声传感结构健康监测技术现状与展望[J].振动·测试与诊断,2020,40(3):427-436,620. [16] 吴文强,伍剑波,张目超,等.基于云平台的管道腐蚀远程在线监测系统[J].无损检测,2021,43(3):49-52,61. [17] 甘国友,严继康,孙加林,陈敬超,张家涛.压电复合材料的现状与展望[J].功能材料,2000,31(5):456-459,463. [18] 束逸.基于新型微纳结构的柔性压力传感器基础研究[D].北京:清华大学,2015. [19] 李振.基于P(VDF-TrFE)复合压电薄膜的柔性超声传感器的制备及性能测试[D].泰安:山东农业大学,2020. [20] 王元霞. 焊缝特征导波高灵敏度阵列式传感器研究与设计[D]. 镇江:江苏大学, 2021. [21] 邱福寿,伍剑波,傅登伟,等.温度变化对干耦合压电腐蚀监测的影响及其补偿方法[J].无损检测,2022,44(2):12-16.
计量
- 文章访问数: 4
- HTML全文浏览量: 0
- PDF下载量: 1