• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

基于超声导波和机器学习的蜂窝夹层结构脱黏诊断

徐浩, 王中枢, 马寅魏, 张佳奇, 李建乐, 范兴华, 武湛君

徐浩, 王中枢, 马寅魏, 张佳奇, 李建乐, 范兴华, 武湛君. 基于超声导波和机器学习的蜂窝夹层结构脱黏诊断[J]. 无损检测, 2022, 44(10): 44-47. DOI: 10.11973/wsjc202210010
引用本文: 徐浩, 王中枢, 马寅魏, 张佳奇, 李建乐, 范兴华, 武湛君. 基于超声导波和机器学习的蜂窝夹层结构脱黏诊断[J]. 无损检测, 2022, 44(10): 44-47. DOI: 10.11973/wsjc202210010
XU Hao, WANG Zhongshu, MA Yinwei, ZHANG Jiaqi, LI Jianle, FAN Xinghua, WU Zhanjun. Debonding diagnosis of honeycomb sandwich structures based on guided waves and machine learning[J]. Nondestructive Testing, 2022, 44(10): 44-47. DOI: 10.11973/wsjc202210010
Citation: XU Hao, WANG Zhongshu, MA Yinwei, ZHANG Jiaqi, LI Jianle, FAN Xinghua, WU Zhanjun. Debonding diagnosis of honeycomb sandwich structures based on guided waves and machine learning[J]. Nondestructive Testing, 2022, 44(10): 44-47. DOI: 10.11973/wsjc202210010

基于超声导波和机器学习的蜂窝夹层结构脱黏诊断

基金项目: 

国防科研项目(XXXX2018204BXXX);国家自然科学基金(12072056,12102075)

详细信息
    作者简介:

    徐浩(1983-),男,博士,副教授,主要从事结构健康监测研究工作

    通讯作者:

    张佳奇, E-mail:zhangjq@mail.dlut.edu.cn

  • 中图分类号: TG115.28

Debonding diagnosis of honeycomb sandwich structures based on guided waves and machine learning

  • 摘要: 针对蜂窝夹层结构的脱黏损伤诊断,首先通过集成压电陶瓷传感器构建传感器网络,采用超声导波加权分布诊断成像方法对损伤进行平面内定位诊断;然后利用超声导波在结构厚度截面内对不同脱黏层的敏感度差异提取损伤特征;最后通过蜂窝夹层结构有限元模型进行大量的导波传播仿真,形成训练数据库,进而训练形成稳定的支持向量机(SVM)脱黏层分类机器学习模型,进行截面内脱黏层诊断。验证试验结果表明,该方法能够有效诊断出蜂窝夹层结构的脱黏损伤,平面内定位误差小于2 cm,截面内脱黏层诊断准确度为100%。
    Abstract: Aiming at the diagnosis of debonding damage of honeycomb sandwich structure, the sensor network was first constructed by integrating piezoelectric ceramic sensors, and the ultrasonic guided wave weighted distribution diagnostic imaging method was used to locate and diagnose the damage in the plane. The sensitivity difference of the debonding layer was used to extract the damage characteristics; finally, a large number of guided wave propagation simulations were carried out through the finite element model of the honeycomb sandwich structure to form a training database, and then a stable support vector machine (SVM) debonding layer classification machine learning model was formed. Diagnosis of intra-section debonding layer. The verification test results show that the method can effectively diagnose the debonding damage of the honeycomb sandwich structure, the positioning error in the plane is less than 2 cm, and the diagnostic accuracy of the debonding layer in the section was 100%.
  • [1]

    YANG J, CHANG F K.Detection of bolt loosening in C-C composite thermal protection panels:II.Experimental verification[J].Smart Materials and Structures, 2006, 15(2):591-599.

    [2] 张佳奇, 刘明辉, 刘科海, 等. 基于超声导波的返回舱热防护结构烧蚀层厚度监测方法[J].航天器环境工程, 2019, 36(5):487-494.
    [3] 李红.高超声速飞行器金属蜂窝夹芯结构的热机耦合行为分析[D].哈尔滨:哈尔滨工程大学, 2011.
    [4] 柳敏静, 武湛君.复合材料蜂窝夹层结构在飞机中的应用[J].科技导报, 2016, 34(8):21-25.
    [5] 柳敏静, 夏梓旭, 李建乐, 等.基于分布式光纤传感的防热结构损伤识别研究[J].压电与声光, 2020, 42(6):765-768.
    [6] 单一男, 武湛君, 徐新生, 等.基于分布式光纤传感的隔热层脱粘识别研究[J].压电与声光, 2020, 42(1):25-28.
    [7] 刘菲菲, 刘松平, 周正干, 等.蜂窝共固化结构高分辨率超声C扫描方法及应用[J].无损检测, 2018, 40(8):1-5, 27.
    [8] 郑伟, 邓安华, 刘云峰, 等.固体火箭发动机衬层与药柱脱粘高能X射线检测技术[J].海军航空工程学院学报, 2014, 29(4):355-359.
    [9] 董丽虹, 郭伟, 王海斗, 等.热障涂层界面脱粘缺陷的脉冲红外热成像检测[J].航空学报, 2019, 40(8):422895.
    [10] 周凯, 徐新生, 武湛君.基于压电传感器的单一模态Lamb波损伤检测[J].压电与声光, 2020, 42(1):38-41.
    [11] 张佳奇, 陈铎, 郑跃滨, 等.基于压电传感器的树脂基复合材料固化过程监测[J].复合材料学报, 2020, 37(11):2776-2781.
    [12] 尹晚, 渠晓溪, 武湛君, 等.火箭贮箱结构健康监测传感器系统设计[J].压电与声光, 2017, 39(1):67-71.
    [13]

    WU Z J, LIU K H, WANG Y S, et al.Validation and evaluation of damage identification using probability-based diagnostic imaging on a stiffened composite panel[J].Journal of Intelligent Material Systems and Structures, 2015, 26(16):2181-2195.

    [14] 刘科海.飞行器关键构件的超声导波损伤诊断成像方法研究[D].大连:大连理工大学, 2016.
    [15]

    HESSER D F, KOCUR G K, MARKERT B.Active source localization in wave guides based on machine learning[J].Ultrasonics, 2020, 106:106144.

计量
  • 文章访问数:  6
  • HTML全文浏览量:  0
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-01
  • 刊出日期:  2022-10-09

目录

    /

    返回文章
    返回