• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

基于GF-WLS和VSM的多能量X射线图像融合方法

白贇沨, 刘祎, 张小琳, 张鹏程, 桂志国

白贇沨, 刘祎, 张小琳, 张鹏程, 桂志国. 基于GF-WLS和VSM的多能量X射线图像融合方法[J]. 无损检测, 2022, 44(9): 34-41. DOI: 10.11973/wsjc202209007
引用本文: 白贇沨, 刘祎, 张小琳, 张鹏程, 桂志国. 基于GF-WLS和VSM的多能量X射线图像融合方法[J]. 无损检测, 2022, 44(9): 34-41. DOI: 10.11973/wsjc202209007
BAI Yunfeng, LIU Yi, ZHANG Xiaolin, ZHANG Pengcheng, GUI Zhiguo. Multi energy X-ray image fusion method based on GF-WLS and VSM[J]. Nondestructive Testing, 2022, 44(9): 34-41. DOI: 10.11973/wsjc202209007
Citation: BAI Yunfeng, LIU Yi, ZHANG Xiaolin, ZHANG Pengcheng, GUI Zhiguo. Multi energy X-ray image fusion method based on GF-WLS and VSM[J]. Nondestructive Testing, 2022, 44(9): 34-41. DOI: 10.11973/wsjc202209007

基于GF-WLS和VSM的多能量X射线图像融合方法

基金项目: 

国家自然科学基金资助项目(61801438)

山西省高等学校科技创新项目(2020L0282)

山西省自然科学基金资助项目(201901D211246)

山西省回国留学人员科研资助项目(2021-111)\

详细信息
    作者简介:

    白贇沨(1998-),女,硕士研究生,主要研究方向为图像处理\;

    通讯作者:

    桂志国, E-mail:guizhiguo@nuc.edu.cn

  • 中图分类号: TP391

Multi energy X-ray image fusion method based on GF-WLS and VSM

  • 摘要: 针对单一能量不能完整体现复杂结构件数字射线成像的全部图像信息这一问题,提出了一种基于引导滤波、加权最小二乘滤波(GF-WLS)和视觉显著图(VSM)的图像融合方法。首先,采用两种滤波方式对图像进行多尺度细节提取,提取出的细节作为细节层,原图作为基础层;其次,根据相位一致性和像素对比度原理分别对细节层和基础层构造视觉显著图,进而通过像素显著性的对比得到初始权重图,再利用引导滤波去除噪声;然后,将权重图归一化作为加权映射权重分别指导基础层与细节层的融合;最后,将融合后的两者进行叠加得到融合结果。试验表明,所提方法能够获得更高质量的融合图像。
    Abstract: To address the problem that a single energy cannot completely reflect all the image information of digital radiography of complex structural parts, we propose an image fusion method based on guided filtering, weighted least squares filtering (GF-WLS) and visual saliency map (VSM). Firstly, two filtering methods were used for multi-scale detail extraction of the image, with the extracted details being used as the detail layer and the original image as the base layer. Secondly, the visual saliency map was constructed by using phase consistency(PC) and pixel contrast. The initial weight map was obtained by the comparison of pixel saliency, and then the noise was removed by using the guided filter. Thirdly, the weight map was normalized as the weighted mapping weights to guide the fusion of the base layer and the detail layer. Finally, the fusion results were obtained by superimposing the two. The experimental comparison showed that the proposed method was able to obtain higher quality fused images.
  • [1] 宋艳艳, 朱倩,朱建伟,等.基于区域特征脉冲耦合神经网络的航空发动机涡轮叶片DR图像融合[J].数据采集与处理,2021,36(1):164-175.
    [2] 赵贺, 张金秀,张正刚.基于NSCT与DWT的PCNN医学图像融合[J].激光与光电子学进展,2021,58(20):453-462.
    [3] 董安勇, 杜庆治,龙华,等.卷积稀疏表示和邻域特征结合的多聚焦图像融合[J].光电子 ·激光,2019,30(4):442-450.
    [4]

    LI S,KANG X,HU J.Image fusion with guided filtering[J].IEEE Transactions on Image Processing,2013,22(7):2864-2875.

    [5]

    MA J L,ZHOU Z Q,WANG B,et al.Infrared and visible image fusion based on visual saliency map and weighted least square optimization[J].Infrared Physics & Technology,2017,82:8-17.

    [6]

    SHARMA V,HARDEBERG J Y,GEORGE S.RGB-NIR image enhancement by fusing bilateral and weighted least squares filters[J].Journal of Imaging Science and Technology,2017,61(4):40409-1.

    [7] 羊肇俊, 曾理.基于加权最小二乘滤波和引导滤波的铸件DR图像融合[J].仪器仪表学报,2021,42(6):211-220.
    [8] 刘明葳, 王任华,李静,等.各向异性导向滤波的红外与可见光图像融合[J].中国图象图形学报,2021,26(10):2421-2432.
    [9] 刘先红, 陈志斌.基于多尺度方向引导滤波和卷积稀疏表示的红外与可见光图像融合[J].光学学报,2017,37(11):111-120.
    [10]

    FARBMAN Z,FATTAL R,LISCHINSKI D,et al.Edge-preserving decompositions for multi-scale tone and detail manipulation[J].ACM Transactions on Graphics,2008,27(3):1-10.

    [11]

    MA K D,LI H,YONG H W,et al.Robust multi-exposure image fusion:a structural patch decomposition approach[J].IEEE Transactions on Image Processing,2017,26(5):2519-2532.

    [12]

    HAYAT N,IMRAN M.Ghost-free multi exposure image fusion technique using dense SIFT descriptor and guided filter[J].Journal of Visual Communication and Image Representation,2019,62:295-308.

    [13]

    BAVIRISETTI D P,DHULI R.Fusion of infrared and visible sensor images based on anisotropic diffusion and karhunen-loeve transform[J].IEEE Sensors Journal,2016,16(1):203-209.

    [14]

    NAIDU V P S.Image fusion technique using multi-resolution singular value decomposition[J].Defence Science Journal,2011,61(5):479.

    [15]

    RAO Y J.In-fibre Bragg grating sensors[J].Measurement Science and Technology,1997,8(4):355-375.

    [16]

    ESKICIOGLU A M,FISHER P S.Image quality measures and their performance[J].IEEE Transactions on Communications,1995,43(12):2959-2965.

    [17]

    ROBERTS J W,VAN AARDT J A,AHMED F B.Assessment of image fusion procedures using entropy,image quality,and multispectral classification[J].Journal of Applied Remote Sensing,2008,2:023522.

    [18]

    CUI G M,FENG H J,XU Z H,et al.Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition[J].Optics Communications,2015,341:199-209.

    [19]

    HAN Y,CAI Y Z,CAO Y,et al.A new image fusion performance metric based on visual information fidelity[J].Information Fusion,2013,14(2):127-135.

计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-04
  • 刊出日期:  2022-09-09

目录

    /

    返回文章
    返回