Intelligent recognition of radiographic inspection film images of China-Russia east line pipeline
-
摘要: 基于中俄东线管道射线检测底片图像和数据,采用Faster R-CNN、YOLO等深度学习算法,建立了全自动焊接环焊缝射线检测缺陷样本数据库,完成了未熔合等主要缺陷类型智能识别技术的研究和开发,初步实现了未熔合、裂纹等危害性缺陷的智能识别。在中俄东线智慧管道建设的目标框架下,射线检测底片图像识别等人工智能新技术的开发和应用,有助于实现管道大数据价值的充分挖掘,提升管道智能化运营管理的水平。Abstract: Using deep learning network of Faster R-CNN and YOLO, we performed defect recognition for radiographic image of China-Russia Eastern Gas pipeline. In this study, the defect sample database of automatic welding girth welds was established, and the research of defect recognition for radiographic image was completed, which preliminarily realized the intelligent identification of hazardous defects such as lack-of-fusion and cracks. Under the construction target of China-Russia Eastern Gas Pipeline, the development and application of new artificial intelligence technologies such as radiographic image recognition can help to unearth the value of pipeline big data and improve the level of pipeline intelligent operation and management.
-
Keywords:
- oil and gas pipeline /
- radiographic testing image /
- girth weld /
- deep learning
-
-
[1] 燕冰川.高强钢管道环焊缝风险排查技术浅析[J].石油管材与仪器,2020,6(2):46-48. [2] 冼国栋,吕游.油气管道环焊缝缺陷排查及处置措施研究[J].石油管材与仪器,2020,6(2):42-45. [3] 刘全利,苗绘,吕新昱,等.中俄东线天然气管道工程DR设备校验方法[J].油气储运,2020,39(4):453-458. [4] 路浩,王新.首套高速列车焊缝射线检测智能化评定系统研制[J].金属加工(冷加工),2016(S1):414-418. [5] 王维斌,雷铮强,杨辉.长输管道数字射线DR检测技术应用与展望[J].油气储运,2020,39(12):1337-1343. [6] 王富祥,玄文博,陈健,等.基于漏磁内检测的管道环焊缝缺陷识别与判定[J].油气储运,2017,36(2):161-170.
计量
- 文章访问数: 7
- HTML全文浏览量: 0
- PDF下载量: 3